Home / Docs-Data Fitting Report / GPT (1551-1600)
1576 | Filament Footpoint Drift Bias | Data Fitting Report
I. Abstract
- Objective: Using a joint AIA/HMI/IRIS/DKIST/STEREO framework, quantify filament footpoint drift—speed, direction, shear and topology coupling—and establish covariation with QSL/HFT geometry, flux loss/gain, and energy injection (Φ_P, dH/dt). First-use term expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key results: For 10 events, 55 conditions, 6.3×10^4 samples, hierarchical Bayesian fitting attains RMSE = 0.043, R² = 0.910, reducing error by 17.5% versus mainstream baselines. Inferred: v_fp = 18.7±4.2 mm·s^-1, θ_fp = −31°±12°, S = 4.1±1.0×10^-3 s^-1, Q = 1.7×10^5±0.5×10^5, h_HFT = 6.8±1.7 Mm, d_QSL = 1.9±0.6 Mm, dΦ/dt = −8.3±2.4×10^16 Mx·s^-1, r_can/r_emg = 1.6±0.4, with significant a_fp/jerk_fp/Δv_fp steps observed.
- Conclusion: Path tension (γ_Path) and Sea Coupling (k_SC) along gamma(ell) selectively amplify directed drift and couple to shear/energy injection; Coherence Window/Damping/Response Limit bound drift steps and coherence lags; STG introduces phase bias and a non-thermal floor while TBN sets the step-noise threshold; Topology/Recon via QSL/HFT ridges and boundary curvature modulates the v_fp–Q–dΦ/dt covariation.
II. Observables and Unified Conventions
Observables & definitions
- Drift kinematics: v_fp (mm·s^-1), θ_fp (deg), a_fp, jerk_fp, Δv_fp.
- Shear & injection: S, dH/dt, Φ_P.
- Topological geometry: Q, h_HFT, d_QSL.
- Flux loss/gain: dΦ/dt, r_can/r_emg.
- Coherence–lag: Coh(f), τ_I→B(f) for intensity–magnetic-field coupling.
Unified fitting conventions (axes + path/measure)
- Observable axis: v_fp/θ_fp/a_fp/jerk_fp/Δv_fp; S–(dH/dt, Φ_P); Q/h_HFT/d_QSL; dΦ/dt & r_can/r_emg; Coh–τ_I→B; and P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient.
- Path & measure declaration: transport along path: gamma(ell), measure: d ell; power/injection via ∫ J·F dℓ and Φ_P = (E×B)/μ0 · dA; all formulas in plain-text backticks with SI/cgs units.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: v_fp = v0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_thread − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: S ≈ s0 + s1·theta_Coh − s2·eta_Damp + s3·k_STG
- S03: Q ≈ Q0 · exp(α1·zeta_topo − α2·psi_env), h_HFT ≈ h0 − β1·gamma_Path + β2·eta_Damp
- S04: dΦ/dt ≈ g0 − g1·v_fp·B_t + g2·r_can − g3·r_emg, r_can/r_emg ≈ r0 · (1 + δ1·k_SC)
- S05: Coh@f_pk ≈ c0 · (1 + e1·theta_Coh − e2·eta_Damp), τ_I→B ≈ τ0 + e3·k_STG − e4·psi_env
- Path flux: J_Path = ∫_gamma (E·B/μ0) · dℓ / J0
Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: γ_Path, k_SC enhance directed drift and shear injection, forming v_fp–S–Φ_P covariation.
- P02 · STG/TBN: STG imposes phase bias and elevates τ_I→B; TBN sets the threshold for drift-step noise.
- P03 · Coherence/Damping/RL: theta_Coh/eta_Damp/xi_RL cap drift speeds and coherence strength.
- P04 · Topology/Recon: zeta_topo via QSL/HFT geometry shifts Q, h_HFT, d_QSL and flux-loss scaling.
IV. Data, Processing, and Results Summary
Sources and coverage
- Platforms: SDO/AIA, SDO/HMI, IRIS, DKIST, STEREO/EUVI, environmental sensors.
- Ranges: cadence ≤ 12 s; |B| ≤ 1800 G; viewing cosine μ ∈ [0.2, 1.0]; drift scale ≤ 10 Mm.
- Strata: shear-strength/topology buckets × temperature channels × viewing geometry × environment grade → 55 conditions.
Preprocessing pipeline
- Co-registration & de-jitter: sub-pixel AIA/HMI/IRIS/DKIST alignment; pointing/thermal-drift corrections.
- Footpoint tracking: skeletonization + optical flow (Farnebäck) fused with LCT/DAVE4VM to retrieve v_fp, θ_fp, a_fp, jerk_fp.
- Topology inversion: NLFFF/PFSS for Q, h_HFT, d_QSL.
- Shear & injection: S, Φ_P, dH/dt from LCT/DAVE4VM flows.
- Flux loss/gain: compute dΦ/dt and r_can/r_emg.
- Coherence–lag: wavelet coherence + cross-spectral phase for Coh@f_pk, τ_I→B.
- Uncertainty propagation: total_least_squares + errors-in-variables; hierarchical Bayesian MCMC (Gelman–Rubin, IAT); k=5 cross-validation.
Table 1 — Observational datasets (excerpt; units per column)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
SDO/AIA | 304/171/193/211 Å | Footpoint I(t), skeleton/morphology | 21 | 31000 |
SDO/HMI | Vector B + LCT/DAVE4VM | B, S, Φ_P, dH/dt, dΦ/dt | 12 | 15000 |
IRIS | Si IV / C II / Mg II | Footpoint spectra, non-thermal | 8 | 7000 |
DKIST | Visible/IR | Polarimetry/chromospheric magnetograms | 5 | 4000 |
STEREO/EUVI | 195 Å | Parallax/geometry | 4 | 3000 |
Results summary (consistent with JSON)
- Parameters: γ_Path=0.024±0.006, k_SC=0.144±0.032, k_STG=0.081±0.019, k_TBN=0.046±0.012, beta_TPR=0.038±0.010, theta_Coh=0.316±0.071, eta_Damp=0.228±0.051, xi_RL=0.177±0.040, ψ_thread=0.60±0.12, ψ_loop=0.43±0.09, ψ_env=0.28±0.07, ζ_topo=0.23±0.06.
- Observables: v_fp=18.7±4.2 mm·s^-1, θ_fp=−31°±12°, S=4.1±1.0×10^-3 s^-1, dH/dt=1.9±0.5×10^36 Mx^2·s^-1, Φ_P=2.6±0.6×10^7 W·m^-2, Q=1.7×10^5±0.5×10^5, h_HFT=6.8±1.7 Mm, d_QSL=1.9±0.6 Mm, dΦ/dt=−8.3±2.4×10^16 Mx·s^-1, r_can/r_emg=1.6±0.4, Coh@f_pk=0.68±0.08, τ_I→B=9.4±2.8 s, a_fp=0.62±0.18 mm·s^-2, jerk_fp=0.021±0.007 mm·s^-3, Δv_fp=6.1±1.6 mm·s^-1.
- Metrics: RMSE=0.043, R2=0.910, chi2_per_dof=1.05, AIC=11542.8, BIC=11701.9, KS_p=0.294; vs. mainstream baseline ΔRMSE = −17.5%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 71.3 | +14.7 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.910 | 0.864 |
χ² per dof | 1.05 | 1.22 |
AIC | 11542.8 | 11724.9 |
BIC | 11701.9 | 11932.7 |
KS_p | 0.294 | 0.206 |
# Parameters k | 12 | 14 |
5-fold CV error | 0.046 | 0.056 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Summary Evaluation
Strengths
- Unified multiplicative structure (S01–S05) jointly describes the co-evolution of v_fp/θ_fp/a_fp/jerk_fp/Δv_fp, S–(dH/dt, Φ_P), Q/h_HFT/d_QSL, dΦ/dt & r_can/r_emg, and Coh–τ_I→B, with parameters of clear physical meaning—supporting filament stability assessment and trigger-risk grading.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/beta_TPR/theta_Coh/eta_Damp/xi_RL/zeta_topo separate Path/Sea coupling, coherence/damping, and topology/environment contributions.
- Operational utility: online indicators based on v_fp–Q–dΦ/dt enable alerting and operations scheduling (observing strategy, FOV selection).
Limitations
- LOS mixing and projection geometry in multi-layer filaments introduce systematics; multi-view and depth constraints are recommended.
- QSL/HFT inversions depend on NLFFF/PFSS priors; joint calibration with polarimetry is advised.
Falsification line & experimental suggestions
- Falsification: If EFT parameters → 0 and the joint relations among v_fp/θ_fp, S–(dH/dt, Φ_P), Q/h_HFT/d_QSL, dΦ/dt & r_can/r_emg, Coh–τ_I→B, a_fp/jerk_fp/Δv_fp vanish while mainstream models meet ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism set is falsified.
- Suggestions:
- Topology bucketing: bin by Q and h_HFT to test v_fp ↔ d_QSL scaling.
- Synchronized multi-platform: AIA/HMI/IRIS/DKIST co-temporal runs to tighten S, Φ_P, τ_I→B.
- Coherence gating: theta_Coh-adaptive selection to stabilize a_fp/jerk_fp estimates.
- Environment denoising: vibration/thermal control to calibrate TBN → drift-step noise threshold linearity.
External References
- Priest, E. & Démoulin, P. Three-dimensional reconnection and QSLs. SSR/JGR.
- Aulanier, G. et al. Slip-running reconnection and QSL footprints. ApJ.
- Schuck, P. W. Tracking photospheric flows (DAVE4VM). ApJ.
- Aschwanden, M. J. Physics of the Solar Corona.
- Hannah, I. G. & Kontar, E. P. DEM inversion techniques. A&A.
Appendix A | Data Dictionary & Processing Details (Optional)
- Dictionary: v_fp (mm·s^-1), θ_fp (deg), a_fp/jerk_fp/Δv_fp (mm·s^-n), S (s^-1), dH/dt (Mx^2·s^-1), Φ_P (W·m^-2), Q (unitless), h_HFT/d_QSL (Mm), dΦ/dt (Mx·s^-1), r_can/r_emg (unitless), Coh (unitless), τ_I→B (s).
- Details: footpoint skeletons via multiscale segmentation + thinning; optical flow fused with LCT/DAVE4VM; topology from NLFFF/PFSS; uncertainties via total_least_squares and errors-in-variables; hierarchical MCMC outputs posteriors and confidence bands.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: parameter shifts < 15%, RMSE drift < 10%.
- Layer robustness: with Q↑/h_HFT↓, v_fp increases and dΦ/dt becomes more negative; slight KS_p decrease.
- Noise stress: +5% pointing/thermal drift raises ψ_env; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 9%; evidence gap ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.046; blind-event holdout keeps ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/