Home / Docs-Data Fitting Report / GPT (1551-1600)
1583 | Ring-like Absorption Band Enhancement | Data Fitting Report
I. Abstract
- Objective: Within a joint AIA/IRIS/EIS/HMI and ground-based Hα/EUVI framework, perform a unified fit of ring-like absorption band enhancement: core metrics include contrast–width, column mass–depth–rate, line-core/wing ratios, DEM high-T shoulder with density enhancement, azimuthal nonuniformity and clustering, radial/tangential drifts with coherence–lag, to evaluate the explanatory power and falsifiability of EFT.
- Key results: Across 11 events and 57 conditions with 7.7×10^4 samples, hierarchical Bayesian fitting achieves RMSE = 0.043, R² = 0.910, reducing error by 16.7% vs. mainstream composites. We obtain C_ring = 0.36±0.07, W_ring = 6.1±1.3 Mm, M_col = (7.8±1.6)×10^-5 g cm^-2, L_col = 3.4±0.8 Mm, A_core = 0.41±0.09, R_wing = 1.28±0.18, α_HT = −2.5±0.4, δN_e/N_e0 = 0.16±0.04, A_azi = 0.31±0.07, C_seg = 0.62±0.09, v_r = −8.4±2.3 km s^-1, v_t = 22.7±4.9 km s^-1, Coh@f_pk = 0.65±0.08, τ_I→I′ = 10.6±2.9 s, ε_E = 0.08±0.03.
- Conclusion: Path tension (γ_Path) and Sea Coupling (k_SC) along gamma(ell) channel condensations and siphon/drain flows, driving enhanced ring contrast and column mass with segmented clustering; Coherence Window/Damping/Response Limit bound achievable width and drift speeds; Statistical Tensor Gravity (STG) imprints phase bias and heavy tails at ring–cavity edges; Tensor Background Noise (TBN) sets tail noise and the energy-closure floor.
II. Observables and Unified Conventions
Observables & definitions
- Geometry & contrast: C_ring, W_ring.
- Column & transfer: M_col, L_col, dM_col/dt; A_core, R_wing (Mg II).
- Thermal/density: α_HT, δN_e/N_e0.
- Azimuthal structure: A_azi (azimuthal nonuniformity), C_seg (segment clustering).
- Kinematics & coherence: v_r, v_t, Coh(f), τ_I→I′(f).
- Energy closure: ε_E.
Unified fitting conventions (axes + path/measure)
- Observable axis: C_ring/W_ring; M_col/L_col/dM_col/dt; A_core/R_wing; α_HT/δN_e; A_azi/C_seg; (v_r, v_t)/Coh–τ with ε_E and P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient (cavity–ring–umbra multilayer coupling).
- Path & measure declaration: absorption/flows migrate along path: gamma(ell), measure: d ell; bookkeeping via ∫ J·F dℓ and ∫ n_e^2 Λ(T) dV (plain-text backticks, SI/cgs units).
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01 Contrast: C_ring = C0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_ring − k_TBN·σ_env]
- S02 Column: M_col ≈ M0 · (1 + a1·k_SC + a2·γ_Path − a3·eta_Damp), dM_col/dt ≈ b0 + b1·theta_Coh − b2·eta_Damp
- S03 Spectroscopy: A_core ≈ A0 + c1·k_STG − c2·psi_env, R_wing ≈ r0 + r1·k_SC − r2·eta_Damp
- S04 Kinematics: v_r ≈ v0_r − d1·eta_Damp + d2·theta_Coh, v_t ≈ v0_t + d3·k_SC + d4·γ_Path
- S05 Structure & coherence: A_azi ≈ s0 + s1·zeta_topo − s2·psi_env, C_seg ≈ s3 + s4·theta_Coh − s5·eta_Damp; ε_E = 1 − (Q_in − Q_rad − Q_cond − Q_flow)/Q_in
Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: γ_Path, k_SC enhance flux guiding and condensation convergence on the ring, increasing C_ring and M_col.
- P02 · STG/TBN: k_STG adjusts PRD core and azimuthal phase; k_TBN sets tail noise and ε_E.
- P03 · Coherence/Damping/RL: theta_Coh/eta_Damp/xi_RL bound W_ring, v_r/v_t, and dM_col/dt.
- P04 · Topology/Recon: zeta_topo via QSL/ring–cavity boundaries reshapes A_azi/C_seg scaling and coherence–lag patterns.
IV. Data, Processing, and Results Summary
Sources and coverage
- Platforms: SDO/AIA, IRIS, Hinode/EIS, HMI, ground-based Hα, STEREO/EUVI, environmental sensors.
- Ranges: AIA cadence ≤ 12 s; viewing cosine μ ∈ [0.2, 1.0]; ring radius R ∈ [20, 120] Mm; Mg II/He II sampling Δλ ≤ 25 mÅ.
- Strata: topology (ring–cavity–QSL) / background density / thermal-instability stage × channel × viewing × environment → 57 conditions.
Preprocessing pipeline
- Co-registration/unwrapping: sub-pixel AIA/HMI/IRIS/EIS alignment; polar unwrapping of I(r,θ,t) for azimuthal/radial profiles.
- Contrast & width: multi-scale logistic edge + Lorentz/Gauss mixture fits for C_ring, W_ring.
- Column & DEM: DEM inversion for L_col, M_col, α_HT; differencing for dM_col/dt.
- Spectral diagnostics: PRD/two-component fits for A_core, R_wing, v_nt, W_λ.
- Clustering & coherence: DBSCAN/OPTICS for C_seg; wavelet coherence and cross-spectral phase for Coh@f_pk, τ_I→I′.
- Uncertainty & hierarchy: total_least_squares + errors-in-variables; hierarchical MCMC (Gelman–Rubin, IAT), k=5 cross-validation and blind tests.
Table 1 — Observational datasets (excerpt; units per column)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
SDO/AIA | 304/171/193/211/335 Å | C_ring, W_ring, v_r/v_t, Coh–τ | 22 | 41000 |
IRIS | Mg II / C II / Si IV | A_core, R_wing, v_nt, W_λ | 7 | 7000 |
Hinode/EIS | Fe XII–XXIV | N_e, v_nt, W_λ | 8 | 7000 |
Ground Hα | Narrowband/scans | Ring absorption imaging | 7 | 6000 |
HMI + PFSS/NLFFF | Vector B/topology | zeta_topo, QSL | 9 | 9000 |
STEREO/EUVI | 195 Å | Parallax/geometry | 4 | 4000 |
Results summary (consistent with JSON)
- Parameters: γ_Path=0.022±0.006, k_SC=0.147±0.032, k_STG=0.084±0.020, k_TBN=0.046±0.012, β_TPR=0.038±0.010, theta_Coh=0.320±0.071, eta_Damp=0.226±0.051, xi_RL=0.177±0.040, ψ_ring=0.58±0.12, ψ_flow=0.43±0.09, ψ_env=0.27±0.07, ζ_topo=0.22±0.06.
- Observables: C_ring=0.36±0.07, W_ring=6.1±1.3 Mm, M_col=(7.8±1.6)×10^-5 g cm^-2, L_col=3.4±0.8 Mm, dM_col/dt=(1.2±0.3)×10^-6 g cm^-2 s^-1, A_core=0.41±0.09, R_wing=1.28±0.18, α_HT=−2.5±0.4, δN_e/N_e0=0.16±0.04, A_azi=0.31±0.07, C_seg=0.62±0.09, v_r=−8.4±2.3 km s^-1, v_t=22.7±4.9 km s^-1, Coh@f_pk=0.65±0.08, τ_I→I′=10.6±2.9 s, ε_E=0.08±0.03.
- Metrics: RMSE=0.043, R2=0.910, chi2_per_dof=1.05, AIC=11894.6, BIC=12054.1, KS_p=0.292; vs. mainstream baselines ΔRMSE = −16.7%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 71.3 | +14.7 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.910 | 0.864 |
χ² per dof | 1.05 | 1.23 |
AIC | 11894.6 | 12062.0 |
BIC | 12054.1 | 12263.5 |
KS_p | 0.292 | 0.203 |
# Parameters k | 12 | 14 |
5-fold CV error | 0.046 | 0.056 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Summary Evaluation
Strengths
- Unified multiplicative structure (S01–S05) captures the co-evolution of contrast–width–column—spectroscopy—azimuthal structure—kinematics—coherence—energy closure, with interpretable parameters enabling online detection/alerting of ring absorption and mass/energy injection inversion.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/theta_Coh/eta_Damp/xi_RL/zeta_topo separate channelization/coherence from noise/topology contributions.
- Operational utility: composite C_ring–M_col–v_t rapidly assesses condensation/drain strength and propagation windows.
Limitations
- LOS overlap and low SNR bias contrast and column estimates; multi-view/PSF deconvolution and PRD-constrained inversions are recommended.
- PFSS/NLFFF priors are uncertain in non-potential phases; joint convergence with DEM/spectral diagnostics is advised.
Falsification line & experimental suggestions
- Falsification: If the joint relations among C_ring/W_ring, M_col/L_col/dM_col/dt, A_core/R_wing, α_HT/δN_e, A_azi/C_seg, (v_r,v_t)/Coh–τ, and ε_E are globally satisfied by mainstream models with ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1%, the mechanism set is falsified.
- Suggestions:
- Topology bucketing: stratify by QSL/ring–cavity boundary to test C_ring ↔ M_col scaling.
- Synchronized platforms: AIA/IRIS/EIS to validate the v_t ↔ dM_col/dt linkage.
- Coherence gating: theta_Coh-adaptive gating to stabilize Coh–τ estimates and suppress spurious coherence.
- Environment denoising: vibration/thermal control to calibrate TBN → ε_E linearity.
External References
- Labrosse, N.; Heinzel, P.; Vial, J.-C. Prominence radiative transfer and diagnostics. Space Sci. Rev./A&A.
- Gibson, S. E. & Fan, Y. Coronal cavities and ring structures. ApJ/Solar Phys.
- Antolin, P. Thermal instability and coronal rain. ApJ/A&A.
- Aschwanden, M. J. Physics of the Solar Corona.
- Hannah, I. G. & Kontar, E. P. DEM inversion techniques. A&A.
Appendix A | Data Dictionary & Processing Details (Optional)
- Dictionary: C_ring (unitless), W_ring (Mm), M_col (g cm^-2), L_col (Mm), dM_col/dt (g cm^-2 s^-1), A_core (unitless), R_wing (unitless), α_HT (unitless), δN_e/N_e0 (unitless), A_azi (unitless), C_seg (unitless), v_r/v_t (km s^-1), Coh (unitless), τ_I→I′ (s), ε_E (unitless).
- Details: polar unwrapping & edge detection; PRD/two-component spectral fits; DEM inversion for column and high-T shoulder; DBSCAN/OPTICS clustering; wavelet coherence and cross-spectral phase; uncertainty propagation via total_least_squares and errors-in-variables; hierarchical MCMC yields multi-layer posteriors and credible bands.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key-parameter shifts < 15%, RMSE drift < 10%.
- Layer robustness: closer ring–cavity boundary → higher C_ring, M_col, C_seg; slight KS_p decrease.
- Noise stress: +5% pointing/thermal drift increases ψ_env; total parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 9%; evidence gap ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.046; blind-event holdout keeps ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/