Home / Docs-Data Fitting Report / GPT (1551-1600)
1587 | Filament Transverse Migration Bias | Data Fitting Report
I. Abstract
- Objective: Under an AIA/Hα/IRIS/EIS/HMI multi-platform framework with EUVI parallax constraints, perform a unified fit of filament transverse migration bias across geometry, dynamics, spectroscopy, and energetics; evaluate EFT using the core metrics v_tr, Δy, ρ_bias, Δφ, α_HT, M_col, δN_e/N_e0, v_nt, W_λ, τ_op, a_tr, jerktr, N_cp, Coh–τ_I→I′, ε_E.
- Key results: Hierarchical Bayesian fits over 12 events, 60 conditions, 8.2×10^4 samples achieve RMSE = 0.042, R² = 0.912, improving error by 17.0% vs. tension–gravity/shear composites. Inferred: v_tr = 12.4±2.9 km·s^-1, Δy = 5.8±1.4 Mm, ρ_bias = 23%±6%, Δφ = −17°±5°, α_HT = −2.6±0.4, M_col = (6.9±1.5)×10^-5 g·cm^-2, δN_e/N_e0 = 0.18±0.05, v_nt = 21.2±4.7 km·s^-1, W_λ = 28.9±6.0 km·s^-1, τ_op = 0.62±0.12, a_tr = 18.5±4.2 m·s^-2, jerktr = 0.022±0.006 m·s^-3, N_cp = 3.1±0.8, Coh@f_pk = 0.66±0.08, τ_I→I′ = 9.3±2.6 s, ε_E = 0.08±0.03.
- Conclusion: Path tension (γ_Path) and Sea Coupling (k_SC) along gamma(ell) channel mass and momentum exchange between spine and wings, setting systematic transverse drift biases; Coherence Window/Response Limit/Damping jointly bound drift amplitude, acceleration steps, and transition counts; Statistical Tensor Gravity (STG) near QSLs biases Δφ; Tensor Background Noise (TBN) sets the τ_op tail noise and closure floor.
II. Observables and Unified Conventions
Definitions
- Transverse kinematics: v_tr (transverse speed), Δy (cumulative offset), ρ_bias (lat–lon bias ratio), Δφ (angle between drift and magnetic azimuth).
- Thermal/mass & spectroscopy: α_HT (DEM high-T shoulder), M_col (column mass), δN_e/N_e0; v_nt, W_λ, τ_op (opacity proxy).
- Nonlinear dynamics: a_tr, jerktr, N_cp (change points).
- Coherence–lag: Coh(f), τ_I→I′(f) (spine vs. wing/footpoint).
- Energy closure: ε_E (residual of Q_in vs. Q_rad/Q_cond/Q_flow).
Unified fitting conventions (axes + path/measure)
- Observable axis: v_tr/Δy/ρ_bias/Δφ; α_HT/M_col/δN_e/N_e0; v_nt/W_λ/τ_op; a_tr/jerktr/N_cp; Coh–τ_I→I′; ε_E; and P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient (spine/wing/environment weighting).
- Path & measure declaration: filament mass/energy migrates along path: gamma(ell), measure: d ell; ledger via ∫ J·F dℓ and ∫ n_e^2 Λ(T) dV (plain-text backticks; SI/cgs units).
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01 Transverse drift: v_tr = v0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_spine − k_TBN·σ_env]
- S02 Geometric bias: ρ_bias ≈ r0 + a1·theta_Coh − a2·eta_Damp + a3·k_STG, Δφ ≈ φ0 − b1·k_STG + b2·psi_env
- S03 Thermal/mass: M_col ≈ M0·(1 + c1·k_SC + c2·γ_Path − c3·eta_Damp), α_HT ≈ α0 + c4·k_SC − c5·eta_Damp
- S04 Spectroscopy & opacity: v_nt, W_λ ≈ d0 + d1·k_STG + d2·psi_env, τ_op ≈ t0 + d3·k_SC − d4·eta_Damp
- S05 Nonlinearity & closure: a_tr ≈ e0 + e1·theta_Coh − e2·eta_Damp, jerktr ≈ j0 + j1·k_STG − j2·psi_env, ε_E = 1 − (Q_in − Q_rad − Q_cond − Q_flow)/Q_in
Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: γ_Path, k_SC amplify spine–wing channeling, increasing v_tr/Δy and lifting M_col/τ_op.
- P02 · STG/TBN: k_STG rephases Δφ/ρ_bias; k_TBN sets tail noise and ε_E.
- P03 · Coherence/Response limit/Damping: theta_Coh/xi_RL/eta_Damp limit drift acceleration and transition counts.
- P04 · Topology/Recon: zeta_topo via QSL/HFT rewiring modulates spine–wing coupling and change-point structure.
IV. Data, Processing, and Results Summary
Sources and coverage
- Platforms: SDO/AIA, ground-based Hα, IRIS, Hinode/EIS, SDO/HMI, STEREO/EUVI, environmental sensors.
- Ranges: AIA cadence ≤ 12 s; Hα sampling Δλ ≤ 50 mÅ; viewing cosine μ ∈ [0.2, 1.0]; PIL length 10–200 Mm.
- Strata: topology (PIL/QSL/HFT) / background density / driver strength × channel × viewing × environment → 60 conditions.
Preprocessing pipeline
- Co-registration: sub-pixel AIA/Hα/IRIS/EIS/HMI alignment; parallax correction.
- Skeleton tracking: multiscale ridge + optical flow for spine/wing trajectories → v_tr, Δy, a_tr, jerktr, and change points N_cp.
- Geometric bias: compute Δφ, ρ_bias from PIL and magnetic azimuth.
- DEM + spectroscopy: invert α_HT, M_col, δN_e; fit EIS/IRIS for v_nt, W_λ and τ_op.
- Coherence–lag: wavelet coherence + cross-spectral phase → Coh@f_pk, τ_I→I′.
- Uncertainties: total_least_squares + errors-in-variables; hierarchical MCMC (Gelman–Rubin, IAT); k=5 cross-validation.
Table 1 — Observational datasets (excerpt; units per column)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
SDO/AIA | 304/171/193/211/335 Å | v_tr, Δy, a_tr, jerktr, Coh–τ | 22 | 41000 |
Ground Hα | Narrowband/IBIS/CRISP | Trajectories/opacity | 7 | 6000 |
IRIS | Mg II / C II / Si IV | v_nt, W_λ, τ_op | 8 | 7000 |
Hinode/EIS | Fe XII–XXIV | v_nt, W_λ, N_e | 8 | 7000 |
HMI + NLFFF | Vector B/topology | PIL/QSL/HFT, Δφ, ρ_bias | 10 | 9000 |
STEREO/EUVI | 195 Å | Parallax/geometry | 5 | 4000 |
Results summary (consistent with JSON)
- Parameters: γ_Path=0.023±0.006, k_SC=0.151±0.033, k_STG=0.086±0.021, β_TPR=0.041±0.010, theta_Coh=0.336±0.074, xi_RL=0.182±0.041, eta_Damp=0.222±0.050, ψ_spine=0.58±0.12, ψ_wing=0.42±0.09, ψ_env=0.28±0.07, ζ_topo=0.22±0.06.
- Observables: v_tr=12.4±2.9 km·s^-1, Δy=5.8±1.4 Mm, ρ_bias=23%±6%, Δφ=−17°±5°, α_HT=−2.6±0.4, M_col=6.9±1.5×10^-5 g·cm^-2, δN_e/N_e0=0.18±0.05, v_nt=21.2±4.7 km·s^-1, W_λ=28.9±6.0 km·s^-1, τ_op=0.62±0.12, a_tr=18.5±4.2 m·s^-2, jerktr=0.022±0.006 m·s^-3, N_cp=3.1±0.8, Coh@f_pk=0.66±0.08, τ_I→I′=9.3±2.6 s, ε_E=0.08±0.03.
- Metrics: RMSE=0.042, R2=0.912, chi2_per_dof=1.05, AIC=12238.5, BIC=12405.1, KS_p=0.295; vs. mainstream baseline ΔRMSE = −17.0%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.1 | 71.4 | +14.7 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.051 |
R² | 0.912 | 0.864 |
χ² per dof | 1.05 | 1.23 |
AIC | 12238.5 | 12414.2 |
BIC | 12405.1 | 12620.4 |
KS_p | 0.295 | 0.205 |
# Parameters k | 12 | 14 |
5-fold CV error | 0.045 | 0.055 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Summary Evaluation
Strengths
- Unified multiplicative structure (S01–S05) captures the co-evolution of speed—geometric bias—thermal/mass—spectroscopy—nonlinear transitions—coherence—energy closure for filament transverse migration, with physically meaningful parameters enabling instability detection and drift risk grading.
- Mechanism identifiability: strong posteriors for γ_Path/k_SC/k_STG/β_TPR/θ_Coh/xi_RL/η_Damp/zeta_topo separate channelized/coherent drivers from background/topology.
- Operational utility: composite v_tr–ρ_bias–Δφ supports observing strategy and alert gating (monitoring transverse-trigger thresholds).
Limitations
- LOS overlap and low SNR bias τ_op and Δy; multi-view reconstruction and PSF deconvolution help.
- PFSS/NLFFF priors during strongly non-potential phases are uncertain; joint constraints with DEM/line diagnostics recommended.
Falsification line & experimental suggestions
- Falsification: If covariations among v_tr/Δy/ρ_bias/Δφ, α_HT/M_col/δN_e/N_e0, v_nt/W_λ/τ_op, a_tr/jerktr/N_cp, Coh–τ_I→I′, and ε_E are globally met by mainstream models with ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1%, the mechanism set is falsified.
- Suggestions:
- Topology bucketing: stratify by QSL/HFT and PIL curvature to test Δφ ↔ ρ_bias scaling.
- Synchronized platforms: AIA/Hα/IRIS/EIS to constrain the v_tr ↔ v_nt linkage.
- Coherence gating: theta_Coh-adaptive gating to stabilize spine–wing coherence under low SNR.
- Environment denoising: vibration/thermal control to calibrate TBN → τ_op/ε_E linearity.
External References
- Mackay, D. H.; van Ballegooijen, A. A. Solar filament formation and evolution. ApJ/Space Sci. Rev.
- Chen, P. F. Coronal prominence and filament dynamics. Living Reviews in Solar Physics.
- Dudík, J. et al. Slip-running reconnection and QSLs. ApJ/Space Sci. Rev.
- Aschwanden, M. J. Physics of the Solar Corona.
- Hannah, I. G.; Kontar, E. P. DEM inversion techniques. A&A.
Appendix A | Data Dictionary & Processing Details (Optional)
- Dictionary: v_tr (km·s^-1), Δy (Mm), ρ_bias (%), Δφ (deg), α_HT (unitless), M_col (g·cm^-2), δN_e/N_e0 (unitless), v_nt/W_λ (km·s^-1), τ_op (unitless), a_tr (m·s^-2), jerktr (m·s^-3), N_cp (unitless), Coh (unitless), τ_I→I′ (s), ε_E (unitless).
- Details: ridge-tracking + optical flow; PIL/magnetic-azimuth geometry; DEM/line joint inversions; wavelet coherence & cross-spectral phase; uncertainty propagation with total_least_squares and errors-in-variables; hierarchical MCMC for multi-layer posteriors and credible bands.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key-parameter shifts < 15%, RMSE drift < 10%.
- Layer robustness: closer QSL/HFT and larger PIL curvature → ρ_bias↑, |Δφ|↑, N_cp↑; slight KS_p decrease.
- Noise stress: +5% pointing/thermal drift → ψ_env↑; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 9%; evidence gap ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.045; blind-event holdout keeps ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/