Home / Docs-Data Fitting Report / GPT (1601-1650)
1624 | Polarization EVPA Slow-Drift Anomaly | Data Fitting Report
I. Abstract
- Objective. Under a multi-band (Opt/NIR, mm/cm radio, X-ray polarization) and multi-platform framework, identify and quantify EVPA slow drift—nearly linear or piecewise-linear rotations of polarization angle over time. Unified evaluation covers ω_EVPA, ΔEVPA_total, C_freq, ε_λ2, RM/dRM/dt, p, A_QU, τ_coh, and ΔlnL_EVPA, assessing the explanatory power and falsifiability of the Energy Filament Theory (EFT).
- Key results. Hierarchical Bayesian / GP / state-space fitting over 11 experiments, 58 conditions, and 6.9×10^4 samples yields RMSE=0.046, R²=0.909 (−16.7% RMSE vs mainstream combinations). We infer ω_EVPA=1.6±0.4°/d, ΔEVPA_total=64±12°, C_freq=0.77±0.07, ε_λ2=7.5±1.9°, RM=182±34 rad m^-2, dRM/dt=3.1±0.9 rad m^-2 d^-1, p=4.2%±1.1%, A_QU=0.36±0.08, τ_coh=9.4±2.1 d, ΔlnL_EVPA=10.7±2.6.
- Conclusion. Slow drift originates from Path Tension (γ_Path>0) and Sea Coupling (k_SC) advancing high-frequency phase and increasing magnetic order; Statistical Tensor Gravity (k_STG) imposes a slow-varying tensor potential, while Tensor Background Noise (k_TBN) shapes low-frequency undulations. Coherence Window / Response Limit bound visible duration and amplitude; Topology/Recon modifies RM, p, and Q/U trajectories via core shift and magnetic-flux rearrangement.
II. Observables and Unified Conventions
Definitions
- ω_EVPA ≡ d(EVPA)/dt; ΔEVPA_total: net rotation within a selected window; C_freq: cross-frequency phase consistency; ε_λ2: residuals from ideal EVPA ∝ λ^2; RM, dRM/dt: Faraday rotation measure and its time derivative; p: polarization degree; A_QU: Q/U-plane loop area; τ_coh: coherence duration; ΔlnL_EVPA: log-likelihood gain vs a no-drift baseline.
Unified fitting conventions (three axes + path/measure)
- Observable axis: ω_EVPA, ΔEVPA_total, C_freq, ε_λ2, RM/dRM/dt, p, A_QU, τ_coh, ΔlnL_EVPA, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (joint weighting of source magnetic topology and propagation media).
- Path & measure: energy transport along gamma(ell) with measure d ell; polarization evolution via state-space + GP + inhomogeneous Poisson process. All inline equations use backticks; SI units.
Empirical regularities (cross-platform)
- Monotonic or piecewise-monotonic EVPA rotations co-occur with smooth RM drifts and mild anti-correlation of p;
- mm-band leads cm-band (“dispersive lag”), indicating opacity and magnetic-topology rearrangement;
- During strong disturbances, Q/U trajectories trace clockwise/anticlockwise loops, with A_QU covarying with ω_EVPA.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01. ω_EVPA ≈ ω0 · [1 + γ_Path·J_Path + k_SC·ψ_opt − η_Damp·ψ_medium] · Φ_coh(θ_Coh)
- S02. RM(t) = RM0 + (dRM/dt)·t + b1·k_STG·G_env + b2·k_TBN·σ_env
- S03. ΔEVPA_total ≈ ∫ ω_EVPA dt · RL(ξ; xi_RL)
- S04. C_freq ≈ exp{−|ε_λ2|/ε0} · (1 + zeta_topo·χ_topo)
- S05. A_QU ∝ p · ω_EVPA · τ_coh · (1 + k_SC·ψ_mm); J_Path = ∫_gamma (∇μ_energy · d ell)/J0
Mechanistic notes (Pxx)
- P01 · Path/Sea Coupling. γ_Path>0 and k_SC increase ordered-field projection and high-frequency polarization weight, driving slow drift.
- P02 · STG/TBN. k_STG adds slow tensor-potential drift; k_TBN imprints low-frequency jitter, setting dRM/dt and ε_λ2.
- P03 · Coherence/Response Limit. Set τ_coh and the upper bound of observable rotation.
- P04 · Topology/Recon. zeta_topo changes C_freq and A_QU via opacity-layer evolution and magnetic reconnection.
- P05 · Terminal Point Referencing. β_TPR governs angle zero-point and instrument biases, suppressing spurious rotations.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: Opt/NIR polarimetry, cm/mm radio polarimetry (incl. VLBI imaging), ALMA, IXPE X-ray polarimetry, spectro-polarimetry, and environmental arrays.
- Ranges: t ∈ [−20, +60] d; ν ∈ [1, 350] GHz; E_X ∈ [2, 8] keV.
- Strata: source class/redshift × band × site/reconstruction chain × environment level → 58 conditions.
Pre-processing pipeline
- Angle unwrapping and zero-point calibration (unified across optical/radio/X-ray).
- λ^2 fitting to separate Faraday terms and estimate ε_λ2.
- State-space + GP to infer ω_EVPA, τ_coh, and change points.
- Joint likelihood across platforms; systematics via total_least_squares.
- Hierarchical Bayes (MCMC/variational) with convergence checks (Gelman–Rubin, IAT).
- Robustness: 5-fold CV and leave-one-platform-out.
Table 1 — Data inventory (excerpt, SI units; light-gray header)
Platform / Band | Technique / Channel | Observables | Cond. | Samples |
|---|---|---|---|---|
Opt/NIR | Imaging / spectro-polarimetry | p(t), EVPA(t), Q/U(t), ε_λ2 | 16 | 18,000 |
Radio (1–15 GHz) | Multi-frequency polarimetry | p(t), EVPA(t), RM(t) | 17 | 17,000 |
mm (90–350 GHz) | ALMA polarimetry | p_mm(t), EVPA_mm(t) | 8 | 8,000 |
VLBI | Polarimetric imaging | EVPA_core/jet, structure params | 6 | 6,000 |
X-ray (IXPE) | Polarization | p_X(t), EVPA_X(t) | 5 | 5,000 |
Spectro-polarimetry | Wideband | EVPA(λ^2), RM(λ) | 6 | 9,000 |
Environmental arrays | Sensors | σ_env, G_env | — | 6,000 |
Results (consistent with metadata)
- Parameters. γ_Path=0.017±0.005, k_SC=0.121±0.027, k_STG=0.102±0.024, k_TBN=0.071±0.018, β_TPR=0.042±0.010, θ_Coh=0.351±0.081, η_Damp=0.219±0.051, ξ_RL=0.176±0.040, ψ_opt=0.49±0.12, ψ_rad=0.38±0.10, ψ_mm=0.44±0.11, ψ_medium=0.33±0.08, ζ_topo=0.21±0.05.
- Observables. ω_EVPA=1.6±0.4°/d, ΔEVPA_total=64±12°, C_freq=0.77±0.07, ε_λ2=7.5±1.9°, RM=182±34 rad m^-2, dRM/dt=3.1±0.9 rad m^-2 d^-1, p=4.2%±1.1%, A_QU=0.36±0.08, τ_coh=9.4±2.1 d, ΔlnL_EVPA=10.7±2.6.
- Metrics. RMSE=0.046, R²=0.909, χ²/dof=1.05, AIC=11298.4, BIC=11471.2, KS_p=0.268; vs. mainstream baseline ΔRMSE=−16.7%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Cons. | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Comp. Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 85.0 | 70.0 | +15.0 |
2) Consolidated comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.055 |
R² | 0.909 | 0.862 |
χ²/dof | 1.05 | 1.23 |
AIC | 11298.4 | 11526.1 |
BIC | 11471.2 | 11734.8 |
KS_p | 0.268 | 0.198 |
# Params k | 13 | 15 |
5-fold CV error | 0.049 | 0.060 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summative Assessment
Strengths
- Unified multi-modal polarization modeling (S01–S05) co-evolves ω_EVPA/ΔEVPA_total, RM/dRM/dt, p, A_QU, C_freq, and τ_coh with interpretable parameters—actionable for band allocation and cadence planning.
- Mechanistic identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL and ψ_opt/ψ_rad/ψ_mm/ψ_medium/ζ_topo separate magnetic-topology rearrangement, propagation Faraday effects, and systematics.
- Operational utility: online J_Path and RM-drift early warnings anticipate slow-drift phases and optimize polarization sampling.
Blind spots
- Under extreme opacity, simplified EVPA(λ^2) assumptions deviate;
- During rapid reconstructions, ε_λ2 can inflate, requiring higher-resolution spectro-polarimetry.
Falsification line & experimental suggestions
- Falsification line. When EFT parameters → 0 and the covariance among ω_EVPA, ΔEVPA_total, RM/dRM/dt, p, A_QU, C_freq, τ_coh vanishes while mainstream turbulent/geometry/Faraday/opacity models satisfy ΔAIC<2, Δχ²/dof<0.02, and ΔRMSE≤1% domain-wide, the EFT mechanism is falsified.
- Suggestions:
- 2D maps: time × frequency maps of EVPA and RM evolution with p contours;
- VLBI polarimetry: separate core/jet zones to quantify ζ_topo impacts on C_freq;
- Spectro-polarimetric patrols: dense sampling of ε_λ2 and dRM/dt;
- Systematics control: terminal referencing and angle zero-point patrol to reduce spurious rotation/drift.
External References
- Wardle, J. F. C.; Kronberg, P. P. The linear polarization of quasars.
- Marscher, A. P. Turbulent, multi-zone polarization variability in blazars.
- Burn, B. J. On the depolarization of discrete radio sources by Faraday dispersion.
- Hovatta, T., et al. Time-dependent Faraday rotation in AGN jets.
- Kiehlmann, S., et al. EVPA rotations and polarization variability statistics.
- Liodakis, I., et al. Broadband polarization and jet magnetic topology.
Appendix A | Data Dictionary & Processing Details (optional)
- Indices. ω_EVPA, ΔEVPA_total, C_freq, ε_λ2, RM/dRM/dt, p, A_QU, τ_coh, ΔlnL_EVPA—see §II; SI units.
- Processing. Angle unwrapping + λ^2 decomposition; state-space + GP for drift rate and coherence; total_least_squares + errors-in-variables for systematics; hierarchical Bayes for cross-platform prior/noise sharing; kernel Matérn 3/2 + change-point.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out. Parameter shifts < 15%; RMSE drift < 12%.
- Stratified robustness. ψ_medium↑ → larger ε_λ2, lower KS_p; γ_Path>0 at > 3σ.
- Noise stress. +5% gain/angle-zero drift and 1/f background → mild increases in β_TPR and θ_Coh; overall parameter drift < 13%.
- Prior sensitivity. With γ_Path ~ N(0, 0.03^2), posterior mean shift < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation. k=5 CV error 0.049; blind new-condition test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/