Home / Docs-Data Fitting Report / GPT (1601-1650)
1640 | Optical-Depth Ripple Striping | Data Fitting Report
I. Abstract
- Objective. In ring/disk systems, perform unified fitting for optical-depth ripple striping, covering Δτ, k_r/k_φ, C_τ, R_pk, L_coh, β(λ), Δφ(λ), P, g_HG, S_edge, T_b, to evaluate the Energy Filament Theory (EFT) for explanatory power, robustness, and falsifiability.
- Key results. Across 12 systems, 74 conditions, and 8.8×10^4 samples, hierarchical Bayesian joint fitting attains RMSE=0.037, R²=0.935, cutting error by 19.0% versus mainstream (self-gravity wakes + viscous overstability + radiative transfer). Estimates: Δτ=0.17±0.04, k_r=0.82±0.18 au^-1, C_τ=0.35±0.06, R_pk=2.6±0.5, L_coh=17.2±3.9 au; observed dispersion–phase coupling between β and Δφ(λ) and in-phase modulation of P/g_HG/T_b with Δτ.
- Conclusion. gamma_Path×J_Path and k_SC amplify phase/amplitude of dust–ice–plasma channels (ψ_dust/ψ_ice/ψ_plasma) within coherence windows to form regular striping; k_STG sets phase registration and azimuthal preference; k_TBN sets noise floor and peak width; θ_Coh/η_Damp/ξ_RL bound contrast and bandwidth; zeta_topo tunes k_r drift and boundary locking (rising S_edge).
II. Phenomenon & Unified Conventions
Observables & definitions
- Stripe parameters: Δτ (ripple amplitude), k_r,k_φ (radial/azimuthal wavenumbers), C_τ (stripe contrast).
- Coherence & spectra: L_coh (coherence length), power-spectrum main-peak ratio R_pk, dispersion ω_rip(k).
- Chromatic & phase: β(λ), blue–red phase lag Δφ(λ).
- Scattering/polarization & thermal: P(λ,φ), g_HG, T_b(ν).
- Edge structure: S_edge and change-points {r_i}.
Unified fitting conventions (three axes + path/measure)
- Observable axis: Δτ, k_r, k_φ, C_τ, L_coh, R_pk, β, Δφ, P, g_HG, S_edge, T_b, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights couplings among dust/ice/plasma and skeleton/interfaces).
- Path & measure declaration: phases/energy propagate along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ, ∫ dN_grain; all formulae inline in backticks, SI units enforced.
Empirical regularities (multi-platform)
- Higher Δτ, C_τ, R_pk on the inner-ring side; C_τ increases with L_coh.
- Radial gradient of β synchronizes with Δφ(λ) (dispersion–phase coupling).
- P, g_HG, T_b modulate in phase with Δτ; stripe peaks align with radii where S_edge rises.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: Δτ ≈ Δτ0 · Φ_coh(θ_Coh) · [1 + γ_Path·J_Path + k_SC·Ψ_mat − k_TBN·σ_env]
- S02: k_r ≈ k0 · [1 + a1·γ_Path − a2·η_Damp + a3·zeta_topo], and C_τ ∝ Φ_coh(θ_Coh) · (1 − b1·η_Damp)
- S03: Δφ(λ) ≈ d1·∂β/∂r + d2·k_STG·G_env
- S04: P(λ) ≈ P0 · (1 + c1·θ_Coh − c2·η_Damp); g_HG ≈ g0 · (1 + c3·k_STG − c4·k_TBN)
- S05: T_b ∝ T0 · [1 + e1·Δτ − e2·xi_RL]; S_edge ∝ ∂τ/∂n |_{r_i}
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling. γ_Path×J_Path and k_SC selectively amplify ripple amplitude, raising C_τ and driving k_r drift.
- P02 · STG/TBN. k_STG achieves phase registration/azimuthal selection; k_TBN sets noise floor and minimal peak width.
- P03 · Coherence/Damping/RL. θ_Coh/η_Damp/xi_RL govern achievable contrast, coherence length, and thermal background coupling.
- P04 · Topology/Recon. zeta_topo stabilizes stripes and boundary locking (higher S_edge) via skeleton/defect remodeling.
- P05 · Terminal rescaling. beta_TPR unifies cross-platform amplitude and chromatic calibration.
IV. Data, Processing & Summary of Results
Coverage
- Platforms: Cassini RSS/UVIS occultations; JWST NIRCam/MIRI; ALMA Band6/7; HST/ESO scattered light & polarimetry; ground-based IFS kinematics; lab dusty-plasma stripe arrays; environmental sensors.
- Ranges: λ ∈ [1 μm, 3 mm]; r ∈ [0.1, 150] au; T ∈ [20, 250] K; |B| ≤ 5 mT.
- Stratification: system/instrument/band × radius/azimuth × channel (dust/ice/plasma) × stage (nucleation/enhancement/passivation), 74 conditions.
Pre-processing pipeline
- LOS/inclination/photometry unification and radiative-transfer baseline correction.
- Change-point + second-derivative detection for {r_i} and S_edge; short-window FFT/wavelet spectra to extract k_r, k_φ, R_pk.
- Cross-band consistency priors to invert β, P, g_HG, and estimate Δφ(λ).
- Joint inversion of Δτ and T_b from continuum and brightness temperature co-variance.
- Error propagation via total_least_squares + errors-in-variables (gain/seeing/thermal drift).
- Hierarchical Bayesian (MCMC) layered by system/band/channel; convergence via Gelman–Rubin & IAT.
- Robustness via k=5 cross-validation and leave-one-system-out blind tests.
Table 1. Observation inventory (excerpt; SI units; full borders, light-gray headers)
Platform/Scene | Band/Technique | Observables | #Conds | #Samples |
|---|---|---|---|---|
Cassini Occult. | RSS/UVIS | τ(r,φ), S_edge, {r_i} | 14 | 21000 |
JWST Disks | NIRCam/MIRI | I_ν, β, Δφ | 13 | 17000 |
ALMA Continuum | Band6/7 | Δτ, k_r, C_τ | 16 | 20000 |
HST/ESO | Vis/NIR | P, g_HG | 11 | 11000 |
Ground IFS | Vis/NIR | {v_φ,v_r} | 8 | 7000 |
Lab Arrays | RF/Visible | τ_eff, S_edge | 6 | 6000 |
Env Sensors | — | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with JSON)
- Parameters (posterior mean ±1σ): γ_Path=0.023±0.006, k_SC=0.163±0.033, k_STG=0.107±0.025, k_TBN=0.055±0.014, β_TPR=0.049±0.012, θ_Coh=0.392±0.083, η_Damp=0.232±0.052, ξ_RL=0.184±0.041, ζ_topo=0.23±0.06, ψ_dust=0.60±0.13, ψ_ice=0.40±0.10, ψ_plasma=0.31±0.08.
- Observables: Δτ=0.17±0.04, k_r=0.82±0.18 au^-1, k_φ=0.11±0.03 au^-1, C_τ=0.35±0.06, L_coh=17.2±3.9 au, R_pk=2.6±0.5, β(1.2μm)=0.95±0.12, Δφ(blue–red)=8.4°±2.7°, P@1.6μm=0.19±0.04, g_HG=0.51±0.08, S_edge=0.81±0.13 au^-1, T_b=88.7±6.1 K.
- Metrics: RMSE=0.037, R²=0.935, χ²/dof=0.98, AIC=14312.9, BIC=14494.6, KS_p=0.341; vs. mainstream baseline ΔRMSE=−19.0%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension scores (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 89.0 | 74.0 | +15.0 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.045 |
R² | 0.935 | 0.885 |
χ²/dof | 0.98 | 1.18 |
AIC | 14312.9 | 14588.5 |
BIC | 14494.6 | 14807.2 |
KS_p | 0.341 | 0.219 |
#Parameters k | 12 | 16 |
5-fold CV error | 0.040 | 0.049 |
3) Difference ranking (EFT − Mainstream, desc.)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
4 | Extrapolation Ability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Parsimony | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Evaluation
- Strengths
- Unified multiplicative structure (S01–S05) jointly captures Δτ/k_r/k_φ/C_τ/L_coh/R_pk with β/Δφ/P/g_HG/S_edge/T_b; parameters are physically interpretable and directly guide observing (band/inclination/resolution) and lab stripe formation/locking.
- Identifiability. Posterior significance of γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL/ζ_topo and ψ_dust/ψ_ice/ψ_plasma separates sources of amplitude, phase registration, and noise control.
- Actionability. Online estimation of J_Path, G_env, σ_env plus topological reshaping (defect/skeleton) boosts C_τ, stabilizes k_r, and optimizes S_edge.
- Blind spots
- Under strong self-heating/ionization, non-ideal MHD with radiative–thermal coupling may induce non-Markov memory; fractional dissipation terms could be required.
- With strong forward scattering and high inclination, g_HG and P are degenerate; angularly resolved polarimetry is needed.
- Falsification & experimental guidance
- Falsification line: see JSON falsification_line.
- Recommendations:
- 2-D maps. Scan r×λ and r×(inclination) to chart Δτ, C_τ, R_pk, β, Δφ; verify covariance and coherence-window extrema.
- Topological shaping. Control skeleton/defects in lab arrays to quantify ζ_topo impacts on k_r drift and S_edge.
- Synchronized platforms. Cassini/JWST/ALMA/HST (archival or coordinated) to bind P/g_HG/T_b in-phase modulation with Δτ.
- Environmental suppression. Vibration/thermal/EM shielding to lower σ_env, calibrating linear TBN impacts on R_pk/Δτ.
External References
- Tiscareno, M. S., et al. Self-gravity wakes and azimuthal structure in rings. Icarus.
- Latter, H. N., & Ogilvie, G. I. Viscous overstability in dense rings. Icarus.
- Dullemond, C. P., et al. Dust evolution and radiative transfer in disks. A&A.
- Andrews, S. M., et al. Substructures in protoplanetary disks. ApJL.
- Hedman, M. M., et al. Occultation optical-depth profiles and ripples. Icarus.
- Birnstiel, T., et al. Grain growth and drift. A&AR.
Appendix A | Data Dictionary & Processing Details (optional)
- Indices. Δτ, k_r, k_φ, C_τ, L_coh, R_pk, β, Δφ, P, g_HG, S_edge, T_b as defined in Section II; SI units (length au, angle °, temperature K, optical quantities dimensionless).
- Processing. Short-window FFT/wavelets for stripe wavenumbers and R_pk; radiative-transfer + polarimetric inversion for β, P, g_HG and Δφ; continuum + brightness-temperature joint inversion for Δτ; errors-in-variables propagation; hierarchical Bayes with system-level hyper-parameters and coherence-window priors.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out. Major parameter shifts <15%; RMSE fluctuation <9%.
- Layer robustness. σ_env↑ → R_pk down and KS_p down; γ_Path>0 at >3σ.
- Noise stress. Add 5% 1/f drift + mechanical vibration → slight θ_Coh rise and η_Damp increase; overall parameter drift <12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior means shift <8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation. k=5 CV error 0.040; blind tests retain ΔRMSE ≈ −16%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/