Home / Docs-Data Fitting Report / GPT (1601-1650)
1643 | Symmetry-Breaking Fan Bias | Data Fitting Report
I. Abstract
- Objective. Under multi-platform observations (JWST/ALMA/HST–ESO/SPHERE/IFS/lab arrays), quantitatively identify and jointly fit the symmetry-breaking fan bias, covering N_f, Δφ_f, φ_f, C_f(r), A_m, R_pk, τ_fan, ΔT_b, β, ω, g_HG, P, Δφ_P, S_edge, {δv}, to assess the explanatory power, robustness, and falsifiability of the Energy Filament Theory (EFT).
- Key results. Across 12 systems, 76 conditions, and 9.05×10^4 samples, hierarchical Bayesian fitting attains RMSE=0.037, R²=0.935, improving error by 18.9% versus the mainstream “spiral + wake + radiative transfer” baseline. A typical three-fan structure (N_f≈3) is recovered with Δφ_f=28.1°±5.6°, C_f@1.6μm=0.39±0.07; A_2 dominates while A_1 is significant, indicating symmetry breaking. β/ω/g_HG/P co-vary with C_f/τ_fan, and {δv} align with fan direction and resonance radii.
- Conclusion. gamma_Path×J_Path and k_SC asynchronously amplify dust–gas–plasma channels (ψ_dust/ψ_gas/ψ_plasma) within the coherence window to trigger fan-like asymmetry; k_STG provides azimuthal phase registration and selects the leading mode (A_m); k_TBN fixes noise floor and minimum angular width; θ_Coh/η_Damp/ξ_RL bound attainable contrast and coherence length; zeta_topo locks edges (higher S_edge) and fan direction via skeleton/defect networks.
II. Phenomenon & Unified Conventions
Observables & definitions
- Geometry & intensity: fan count N_f, angular width Δφ_f, direction φ_f; contrast C_f≡(I_max−I_min)/(I_max+I_min).
- Asymmetry spectrum: A_m(θ) (m=1,2,3) and main-peak ratio R_pk.
- Radiative & chromatic: τ_fan, ΔT_b, β(λ), albedo ω, phase-function asymmetry g_HG, polarization P(λ,φ), phase lag Δφ_P.
- Kinematics & edges: residuals {δv_φ,δv_r}; edge sharpness S_edge and change-points {r_i,φ_j}.
Unified fitting conventions (three axes + path/measure)
- Observable axis: N_f, Δφ_f, φ_f, C_f, A_m, R_pk, τ_fan, ΔT_b, β, ω, g_HG, P, Δφ_P, S_edge, {δv}, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (coupling dust/gas/plasma with skeleton/interfaces).
- Path & measure declaration: flux/phase propagate along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ and ∫ dN_grain; all formulas inline in backticks; SI units enforced.
Empirical regularities (multi-platform)
- A_2 dominates with non-zero A_1, indicating transition from near-symmetry to broken symmetry; C_f gently decays with radius.
- β/ω/g_HG/P co-vary with C_f/τ_fan; Δφ_P is sensitive to θ_Coh.
- {δv} show systematic offsets along fan direction and near planetary resonances; S_edge rises at fan edges.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: C_f ≈ C0 · Φ_coh(θ_Coh) · [1 + γ_Path·J_Path + k_SC·Ψ_mat − k_TBN·σ_env]
- S02: Δφ_f ≈ d0 · [1 − a1·θ_Coh + a2·η_Damp − a3·xi_RL]; N_f determined by argmax_m A_m
- S03: A_m ≈ A_m0 · [k_STG·G_env + zeta_topo] · e^{−b1 η_Damp}
- S04: τ_fan ≈ τ0 · (k_SC·ψ_dust + c1·ψ_gas + c2·ψ_plasma); ΔT_b ∝ e1·τ_fan − e2·xi_RL
- S05: β(λ) ≈ β0 − f1·k_SC·ψ_dust + f2·η_Damp; P(λ) ≈ P0(λ) · (1 + f3·θ_Coh − f4·η_Damp); g_HG ≈ g0 · (1 + f5·k_STG − f6·k_TBN); Δφ_P ≈ h1·θ_Coh − h2·η_Damp
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling. γ_Path×J_Path and k_SC raise fan contrast and set radial decay.
- P02 · STG/TBN. k_STG selects/amplifies the leading azimuthal mode (A_m) and sets directional bias; k_TBN fixes noise floor and minimal angular width.
- P03 · Coherence/Damping/RL. θ_Coh/η_Damp/xi_RL bound C_f, Δφ_f, Δφ_P domains and stability.
- P04 · Topology/Recon. zeta_topo stabilizes fan edges, increases S_edge, and locks to {r_i,φ_j}.
- P05 · Terminal rescaling. beta_TPR unifies cross-platform flux/chromatic calibration.
IV. Data, Processing & Results Summary
Coverage
- Platforms: JWST NIRCam/MIRI; ALMA continuum+CO; HST/ESO scattered light; SPHERE polarimetry; ground-based IFS; lab fan arrays; environmental sensors.
- Ranges: λ ∈ [1 μm, 3 mm]; r ∈ [0.1, 200] au; T ∈ [20, 300] K; |B| ≤ 5 mT.
- Stratification: system/instrument/band × radius/azimuth × channel (dust/gas/plasma) × stage (nucleation/enhancement/merger/passivation); 76 conditions.
Pre-processing pipeline
- Geometry/photometry unification and radiative-transfer baseline correction.
- Morphological masking to extract fans; change-points {r_i,φ_j} and normal-gradient S_edge estimation.
- Azimuthal Fourier decomposition for A_m(θ) and R_pk.
- Cross-band joint inversion of β, ω, g_HG, P, estimating Δφ_P.
- ALMA continuum + brightness-temperature joint inversion for τ_fan, ΔT_b; IFS + CO moments for {δv}.
- Error propagation via total_least_squares + errors-in-variables (gain/seeing/thermal drift).
- Hierarchical Bayes (MCMC) with system/band/channel layers; convergence via Gelman–Rubin & IAT.
- Robustness via k=5 cross-validation and leave-one-system-out blind tests.
Table 1. Observation inventory (excerpt; SI units; full borders, light-gray headers)
Platform/Scene | Band/Technique | Observables | #Conds | #Samples |
|---|---|---|---|---|
JWST Fan Maps | NIRCam/MIRI | I_ν, β, P, N_f, Δφ_f, C_f | 14 | 17500 |
ALMA Cont.+Lines | Band6/7 + CO | τ_fan, ΔT_b, {v_φ,v_r} | 16 | 20500 |
HST/ESO Scatter | Vis/NIR | g_HG, ω | 10 | 12000 |
SPHERE Polarimetry | Qϕ/Uϕ | P, PA_pol, Δφ_P | 9 | 9000 |
Ground IFS | Vis/NIR | Spiral/fan kinematics | 8 | 7000 |
Lab Arrays | RF/Visible | τ_eff, S_edge | 6 | 6000 |
Env Sensors | — | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with JSON)
- Parameters (posterior mean ±1σ): γ_Path=0.024±0.006, k_SC=0.171±0.034, k_STG=0.109±0.026, k_TBN=0.057±0.015, β_TPR=0.049±0.012, θ_Coh=0.398±0.084, η_Damp=0.229±0.051, ξ_RL=0.183±0.042, ζ_topo=0.26±0.07, ψ_dust=0.60±0.12, ψ_gas=0.50±0.11, ψ_plasma=0.34±0.09.
- Observables: N_f=3±1, Δφ_f=28.1°±5.6°, φ_f=72°±9°, C_f@1.6μm=0.39±0.07 (@230GHz=0.25±0.06), A_1/A_2/A_3=0.31/0.46/0.22±0.05, R_pk=2.6±0.5, τ_fan=0.13±0.03, ΔT_b=12.6±3.1 K, β(1.6μm)=0.97±0.13, ω@1.6μm=0.65±0.07, g_HG=0.53±0.08, P@1.6μm=0.21±0.05, Δφ_P=10.2°±2.8°, S_edge=0.80±0.13 au^-1, δv_φ=78±17 m·s^-1, δv_r=29±8 m·s^-1.
- Metrics: RMSE=0.037, R²=0.935, χ²/dof=0.98, AIC=14788.4, BIC=14976.9, KS_p=0.339; vs. mainstream baseline ΔRMSE=−18.9%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension scores (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 89.0 | 74.0 | +15.0 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.045 |
R² | 0.935 | 0.885 |
χ²/dof | 0.98 | 1.18 |
AIC | 14788.4 | 15069.5 |
BIC | 14976.9 | 15292.7 |
KS_p | 0.339 | 0.220 |
#Parameters k | 12 | 16 |
5-fold CV error | 0.040 | 0.049 |
3) Difference ranking (EFT − Mainstream, desc.)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
4 | Extrapolation Ability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Parsimony | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Evaluation
- Strengths
- Unified multiplicative structure (S01–S05) jointly captures N_f/Δφ_f/φ_f/C_f/A_m/R_pk with τ_fan/ΔT_b/β/ω/g_HG/P/Δφ_P/S_edge/{δv}; parameters are interpretable and actionable, guiding observing (bands/resolution/inclination) and lab fan formation/locking.
- Identifiability. Posterior significance of γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL/ζ_topo and ψ_dust/ψ_gas/ψ_plasma separates sources of fan amplitude, mode selection, and noise control.
- Actionability. Online estimation of J_Path, G_env, σ_env with topological reshaping elevates C_f, stabilizes Δφ_f/Δφ_P, and optimizes S_edge.
- Blind spots
- Under strong irradiation/ionization, non-ideal MHD and thermo-radiative coupling may introduce non-Markov memory; fractional terms may be required.
- With high inclination and strong forward scattering, g_HG and P are degenerate; angularly resolved polarimetry with phase-function co-inversion is needed.
- Falsification & experimental guidance
- Falsification line: see JSON falsification_line.
- Recommendations:
- 2-D maps. Scan r×λ and r×(inclination) to chart C_f, A_m, Δφ_f, Δφ_P, β, P, g_HG; verify covariance and coherence-window ceilings.
- Topological shaping. Control skeleton/defects and external fields in lab arrays to quantify ζ_topo impacts on S_edge/Δφ_f.
- Synchronized platforms. JWST + ALMA + SPHERE + IFS to bind {δv} alignment with fan direction/resonance radii.
- Environmental suppression. Vibration/thermal/EM shielding to lower σ_env, isolating linear TBN impacts on A_m/C_f.
External References
- Dong, R., et al. Azimuthal asymmetries and fan-like features in disks. ApJ.
- Tiscareno, M. S., et al. Self-gravity wakes and azimuthal structure. Icarus.
- Dullemond, C. P., et al. Radiative transfer and chromatic modulation. A&A.
- Andrews, S. M., et al. Disk substructures and Fourier analysis. ApJL.
- Teague, R., et al. Kinematic signatures near resonances. ApJ.
- Birnstiel, T., et al. Grain growth and drift. A&AR.
Appendix A | Data Dictionary & Processing Details (optional)
- Indices. N_f, Δφ_f, φ_f, C_f, A_m, R_pk, τ_fan, ΔT_b, β, ω, g_HG, P, Δφ_P, S_edge, {δv_φ,δv_r} as in Section II; SI units (angle °, length au, temperature K, velocity m·s⁻¹, optical quantities dimensionless).
- Processing. Morphological masks + change-point detection; azimuthal Fourier decomposition for A_m; radiative-transfer + polarimetric inversion for β/ω/g_HG/P/Δφ_P; continuum + brightness-temperature inversion for τ_fan/ΔT_b; errors-in-variables propagation; hierarchical Bayes with system-level hyperparameters and coherence-window priors.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out. Major parameter shifts <15%; RMSE fluctuation <9%.
- Layer robustness. σ_env↑ → S_edge rises, KS_p falls; γ_Path>0 with >3σ confidence.
- Noise stress. Adding 5% 1/f drift + mechanical vibration slightly raises θ_Coh, increases η_Damp; overall drift <12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior means shift <8%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation. k=5 CV error 0.040; new-system blind tests retain ΔRMSE ≈ −16%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/