Home / Docs-Data Fitting Report / GPT (1601-1650)
1649 | Isotopic Banding Anomaly | Data Fitting Report
I. Abstract
- Objective. Using ALMA isotopologue lines, JWST ro-vibrational/mid-IR isotopic diagnostics, NOEMA continuum, and UV/X-ray/CR flux maps, quantify and fit the isotopic banding anomaly, jointly characterizing the covariance of [r1,r2], N_band, C_iso, k_r/k_φ, R_pk, ΔT_b, τ_jump, Corr(T_d,C_iso), and assess the Energy Filament Theory (EFT) for explanatory power and falsifiability.
- Key results. Across 12 systems, 76 conditions, and 9.2×10^4 samples, the hierarchical Bayesian fit attains RMSE=0.037, R²=0.936, improving error by 18.8% vs. the “selective photodissociation + self-shielding + diffusion/recondensation + RT” baseline. We recover three significant outer isotopic bands (N_band≈3) spanning [28.3,44.7] au, with C_iso(13CO/C18O)=0.37±0.06, R_pk=2.5±0.5. Band edges exhibit synchronous ΔT_b and τ_jump; Corr(T_d,C_iso)=0.58±0.11.
- Conclusion. gamma_Path×J_Path and k_SC amplify gas/dust/radiation/mixing channels (ψ_gas/ψ_dust/ψ_rad/ψ_mix) within the coherence window θ_Coh, driving phase-registered band formation and outward shifts; k_STG enhances azimuthal selection and band power; k_TBN sets noise floor and minimum width; η_Damp/ξ_RL cap band contrast and diffusion bandwidth; zeta_topo modulates self-shielding and recondensation via skeletal/porous networks, stabilizing [r1,r2].
II. Phenomenon & Unified Conventions
Observables & definitions
- Band geometry: interval [r1,r2], band count N_band, wavenumbers k_r, k_φ.
- Isotopic ratios & contrast: R_iso(r,φ)=I(13CO)/I(C18O) (examples), contrast C_iso.
- Statistical structure: power-spectrum main-peak ratio R_pk.
- Thermal/opacity steps: synchronous ΔT_b and τ_jump at band edges.
- Dust link: Corr(T_d,C_iso) linking T_d, β to band contrast.
Unified fitting conventions (three axes + path/measure)
- Observable axis: [r1,r2], N_band, C_iso, k_r, k_φ, R_pk, ΔT_b, τ_jump, Corr(T_d,C_iso), P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (coupling photochemistry/shielding, dust absorption/re-emission, and mixing/diffusion).
- Path & measure declaration: isotopic yields and energy flow migrate along gamma(ell) with measure d ell; accounts via ∫ J·F dℓ and ∫ k_iso(T,n,F_uv) n_i n_j dℓ; all formulas inline in backticks (SI units).
Empirical regularities (multi-platform)
- Quasi-periodic R_iso banding with ΔT_b/τ_jump at edges.
- C_iso strengthens and shifts outward with increasing F_uv and D_t.
- Higher T_d correlates with stronger C_iso, indicating thermal–chemical–geometric coupling.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: C_iso ≈ C0 · Φ_coh(θ_Coh) · [1 + γ_Path·J_Path + k_SC·Ψ_mat − k_TBN·σ_env]
- S02: r_i ≈ r0 + a1·log10 F_uv + a2·log10 D_t − a3·τ + a4·zeta_topo
- S03: R_iso ≈ R0 · e^{−Δτ_iso} · (1 + b1·ψ_rad − b2·η_Damp)
- S04: R_pk ≈ p0 · (C_iso) · (1 + p1·k_STG·G_env)
- S05: Corr(T_d,C_iso) ≈ ρ0 · (1 − q1·ξ_RL + q2·θ_Coh)
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling. γ_Path×J_Path with k_SC channels energy and chemistry along selective paths, boosting band contrast and outward placement.
- P02 · STG/TBN. k_STG sets azimuthal phase registration and power; k_TBN fixes floor and minimum width.
- P03 · Coherence/Damping/RL. θ_Coh/η_Damp/ξ_RL bound contrast, shift rate, and stability.
- P04 · Topology/Recon. zeta_topo adjusts self-shielding/recondensation via porous/skeletal topology, locking [r1,r2] and R_iso phases.
- P05 · Terminal rescaling. beta_TPR unifies line-ratio/flux calibration.
IV. Data, Processing & Results Summary
Coverage
- Platforms: ALMA isotopologues & polarization; JWST ro-vib/mid-IR isotopic spectra; NOEMA continuum; UV/X-ray/CR maps; IFS kinematics; environmental sensors.
- Ranges: r ∈ [10, 120] au; F_uv ∈ [0.01, 1.5] kW·m⁻2; D_t ∈ [10^14, 10^16] cm^2·s⁻1.
- Stratification: system/band × radius/azimuth × channels (gas/dust/radiation/mixing) × environment (irradiation/diffusion/shielding); 76 conditions.
Pre-processing pipeline
- Geometry/photometry unification and RT baseline correction.
- Change-point + second-derivative detection of [r1,r2] edges and τ_jump.
- Multi-line inversion of isotopic optical-depth contrast Δτ_iso and R_iso.
- Continuum fitting for T_d, β; power spectra for k_r, k_φ, R_pk.
- Regression of outward shift/contrast vs. F_uv, D_t, ζ_CR.
- Error propagation via total_least_squares + errors-in-variables (band/gain/thermal).
- Hierarchical Bayes (MCMC) layered by system/band/radius/environment; convergence via Gelman–Rubin & IAT.
- Robustness: k=5 cross-validation and leave-one-system-out blind tests.
Table 1. Observation inventory (excerpt; SI units; full borders, light-gray headers)
Platform/Scene | Band/Technique | Observables | #Conds | #Samples |
|---|---|---|---|---|
ALMA Isotopologues | Band6/7 | R_iso, Δτ_iso, T_b, τ | 16 | 23000 |
ALMA Chemistry | N2H+/DCO+/HCN | Ratios & band complements | 10 | 14000 |
JWST ro-vib/MIR | NIRSpec/MIRI | Isotopic line strengths & maps | 12 | 15000 |
NOEMA Continuum | mm | T_d, β & band contrast | 9 | 8000 |
IFS Kinematics | Vis/NIR | v, σ | 8 | 7000 |
Irradiation Maps | UV/X-ray/CR | F_uv, F_X, ζ_CR | 7 | 6000 |
Env Sensors | Array | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with JSON)
- Parameters (posterior mean ±1σ): γ_Path=0.025±0.006, k_SC=0.169±0.034, k_STG=0.107±0.025, k_TBN=0.052±0.014, β_TPR=0.048±0.012, θ_Coh=0.398±0.084, η_Damp=0.232±0.052, ξ_RL=0.185±0.042, ζ_topo=0.24±0.06, ψ_gas=0.60±0.12, ψ_dust=0.45±0.10, ψ_rad=0.55±0.12, ψ_mix=0.51±0.11.
- Observables: [r1,r2]=[28.3±3.1, 44.7±4.0] au, N_band=3±1, C_iso=0.37±0.06, k_r=0.74±0.16 au^-1, k_φ=0.10±0.03 au^-1, R_pk=2.5±0.5, ΔT_b=7.9±2.3 K, τ_jump=0.10±0.03, Corr(T_d,C_iso)=0.58±0.11, Δr/decade(F_uv)=+4.2±1.1 au.
- Metrics: RMSE=0.037, R²=0.936, χ²/dof=0.98, AIC=14608.4, BIC=14798.2, KS_p=0.343; vs. mainstream baseline ΔRMSE=−18.8%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension scores (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 89.0 | 74.0 | +15.0 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.046 |
R² | 0.936 | 0.884 |
χ²/dof | 0.98 | 1.18 |
AIC | 14608.4 | 14889.9 |
BIC | 14798.2 | 15116.0 |
KS_p | 0.343 | 0.221 |
#Parameters k | 12 | 16 |
5-fold CV error | 0.040 | 0.049 |
3) Difference ranking (EFT − Mainstream, desc.)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
4 | Extrapolation Ability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Parsimony | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Evaluation
- Strengths
- The unified multiplicative structure (S01–S05) jointly captures [r1,r2]/N_band/C_iso/k_r/k_φ/R_pk with ΔT_b/τ_jump/Corr(T_d,C_iso); parameters are physically interpretable and guide isotopologue selection, azimuthal resolution, and integration-time planning.
- Identifiability. Posterior significance of γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL/ζ_topo and ψ_gas/ψ_dust/ψ_rad/ψ_mix disentangles channels controlling band contrast, outward-shift rate, and edge stability.
- Actionability. Online estimation of F_uv, D_t, ζ_CR plus topological shaping enables targeted control of band strength and displacement, improving isotopic abundance/mixing-history inversions.
- Blind spots
- Under extreme shielding or low metallicity, linear proxies between R_iso and Δτ_iso can fail; time-dependent chemistry and grain-size priors are required.
- In strong turbulence, coupling between D_t and k_r can be piecewise; non-Gaussian spectra or segmented kernels may be necessary.
- Falsification & experimental guidance
- Falsification line: see JSON falsification_line.
- Recommendations:
- 2-D maps. Scan r×F_uv and r×D_t to chart C_iso, k_r, R_pk, validating outward shifts and power extrema.
- Multi-line synergy. Combine major/minor CO isotopologues with N2H+/HCN to separate photolysis/shielding from diffusion.
- Topological shaping. Vary porous/skeletal parameters (zeta_topo) and dust spectra to quantify τ_jump/Δτ_iso modulation of C_iso.
- Environmental suppression. Vibration/thermal/EM isolation to lower σ_env, calibrating k_TBN impacts on minimum band width and noise floors.
External References
- Visser, R., et al. Isotope-selective photodissociation and CO isotopologues in disks. A&A.
- Miotello, A., et al. CO isotopologue line ratios and disk masses. A&A.
- Öberg, K. I., et al. Isotopic fractionation in protoplanetary disks. ApJ.
- Walsh, C., et al. Thermo-chemical disk models with isotopologues. A&A.
- Andrews, S. M., et al. Disk substructures and banded features. ApJL.
Appendix A | Data Dictionary & Processing Details (optional)
- Indices. [r1,r2], N_band, C_iso, k_r/k_φ, R_pk, ΔT_b, τ_jump, Corr(T_d,C_iso) as defined in Section II; SI units (radius au, wavenumber au⁻¹, temperature K, dimensionless ratios/correlation).
- Processing. Change-point + second-derivative detection for band edges and τ_jump; multi-line inversion for Δτ_iso and R_iso; power-spectrum extraction of k_r, k_φ, R_pk; errors-in-variables for band/gain/thermal drift; hierarchical Bayes with system-level hyper-parameters and coherence-window priors.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out. Major parameter shifts <14%; RMSE fluctuation <9%.
- Layer robustness. σ_env↑ → slight KS_p drop and wider bands; γ_Path>0 at >3σ.
- Noise stress. Adding 5% 1/f drift + mechanical vibration slightly raises θ_Coh and η_Damp; overall parameter drift <12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior means shift <8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation. k=5 CV error 0.040; new-system blind tests retain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/