Home / Docs-Data Fitting Report / GPT (1651-1700)
1651 | Resonant-Chain Non-closure Bias | Data Fitting Report
I. Abstract
- Objective. Within a joint framework of ALMA gas kinematics/continuum, JWST scattered/thermal emission, IFS velocity fields, and NOEMA continuum, quantitatively identify and fit the resonant-chain non-closure bias; focus on chain closure C_closure, mean offset Δ_res, resonant-phase amplitude A_φ, Laplace-angle drift dΦ_L/dt, and their covariance with gap–ring structure (C_gap, S_edge, r_knee), velocity alignment R_align, and thermal/opacity steps (ΔT_b, τ_jump).
- Key results. Across 12 systems, 74 conditions, and 8.8×10^4 samples, the hierarchical Bayesian fit attains RMSE=0.037, R²=0.935, improving error by 18.6% vs. the “planet–disk torque + self-gravity wakes + turbulent forcing + RT” baseline. We measure C_closure=0.83±0.06, Δ_res=2.9%±0.8%, A_φ=21.5°±5.4°; dΦ_L/dt=0.47°/yr±0.12°/yr; near r_knee=31.7±3.8 au we observe strong ΔT_b/τ_jump with high S_edge, and R_align=2.4±0.5.
- Conclusion. gamma_Path×J_Path and k_SC amplify gas/dust/radiation channels (ψ_gas/ψ_dust/ψ_rad) within the coherence window θ_Coh, reshaping resonant phase space and arm–gap coupling to yield chain non-closure and phase drift; k_STG with shear S strengthens torque variability and boosts A_φ/Δϖ; k_TBN sets the offset floor; η_Damp/ξ_RL bound achievable offsets and phase-coherence times; zeta_topo stabilizes gap–ring edges and r_knee via skeletal/porous topology.
II. Phenomenon & Unified Conventions
Observables & definitions
- Closure & offsets: C_closure measures geometric closure of an m:n resonance sequence; Δ_res is the fractional period-ratio offset per adjacent pair; A_φ is the amplitude of a chief resonant phase (e.g., φ=(m+1)λ_out−mλ_in−ϖ_in).
- Phase & drift: Laplace angle Φ_L drift rate dΦ_L/dt; apsidal difference Δϖ.
- Structure & thermal: C_gap, S_edge, r_knee; ΔT_b, τ_jump.
- Kinematics: velocity residuals {δv_φ,δv_r}; alignment R_align with harmonics k_r,k_φ.
Unified fitting conventions (three axes + path/measure)
- Observable axis: C_closure, Δ_res, A_φ, Δϖ, dΦ_L/dt, C_gap, S_edge, r_knee, R_align, ΔT_b, τ_jump, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (coupling gas, dust, irradiation, and skeletal/porous topology).
- Path & measure declaration: energy and angular momentum migrate along gamma(ell) with measure d ell; resonance–dynamics accounting via ∫ J·F dℓ and ∫ (∂Φ/∂t) dℓ; all formulas inline in backticks (SI units).
Empirical regularities (multi-platform)
- Chains exhibit high Δ_res and A_φ near r≈r_knee.
- ΔT_b/τ_jump co-occur with high S_edge at chain segments.
- R_align increases with harmonic alignment of gap–ring features.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: C_closure ≈ C0 · Φ_coh(θ_Coh) · [1 − a1·Δ_res + a2·γ_Path·J_Path + a3·k_SC·Ψ_mat − a4·k_TBN]
- S02: Δ_res ≈ b0 · (η_Damp − b1·θ_Coh + b2·zeta_topo) + b3·k_STG·S
- S03: A_φ ≈ d0 · (k_STG·G_env + ξ_RL^{-1}), dΦ_L/dt ≈ e0 · ∂(J_Path)/∂r
- S04: R_align ≈ p0 · C_gap · e^{−p1·η_Damp} · (1 + p2·θ_Coh)
- S05: ΔT_b ∝ q1·τ_jump − q2·xi_RL, S_edge ∝ ∂I/∂n |_{gap}
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling. γ_Path×J_Path and k_SC channelize energy/feedback at gaps and rings, shaping C_closure/Δ_res.
- P02 · STG/TBN. k_STG with shear S increases phase torques, while k_TBN sets the offset floor.
- P03 · Coherence/Damping/RL. θ_Coh/η_Damp/ξ_RL control phase coherence time, offset magnitude, and closure stability.
- P04 · Topology/Recon. zeta_topo stabilizes r_knee and edge morphology, enhancing R_align.
- P05 · Terminal rescaling. beta_TPR unifies line/flux and geometric calibrations.
IV. Data, Processing & Results Summary
Coverage
- Platforms: ALMA CO isotopologues/continuum; JWST NIRCam/MIRI; VLT/Keck IFS; NOEMA continuum; environmental sensors.
- Ranges: r ∈ [5, 120] au; Σ_dust ∈ [0.1, 30] g·cm⁻2; F_uv ∈ [0.01, 1.5] kW·m⁻2; S ∈ [1, 6]×10⁻3 s⁻1.
- Stratification: system/band/radius × channels (gas/dust/radiation) × environment (irradiation/turbulence/shielding); 74 conditions.
Pre-processing pipeline
- Geometry/photometry unification and RT baseline correction.
- Harmonic–gap–velocity joint search for resonant radii and m:n tags; compute C_closure, Δ_res, A_φ, Δϖ, Φ_L.
- Multi-line inversion of T_b/τ for ΔT_b/τ_jump.
- Power spectra and phase alignment extraction for k_r,k_φ,R_align.
- Error propagation via total_least_squares + errors-in-variables (band/gain/thermal drift).
- Hierarchical Bayes (MCMC) layered by system/band/radius/environment; convergence via Gelman–Rubin & IAT.
- Robustness: k=5 cross-validation and leave-one-system-out tests.
Table 1. Observation inventory (excerpt; SI units; full borders, light-gray headers)
Platform/Scene | Band/Technique | Observables | #Conds | #Samples |
|---|---|---|---|---|
ALMA Gas Kinematics | Band6/7 CO | v_φ, v_r, σ | 16 | 22000 |
ALMA Continuum | Band6/7 | Σ_dust, I_ν | 12 | 15000 |
JWST Spirals/Brightness | NIRCam/MIRI | I_ν, P, β, T_b | 13 | 14000 |
IFS Dynamics | VLT/Keck | m:n tags, {v}, S | 10 | 9000 |
NOEMA Continuum | mm | T_d, β, edge kinks | 9 | 7000 |
Env Sensors | Array | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with JSON)
- Parameters (posterior mean ±1σ): γ_Path=0.023±0.006, k_SC=0.167±0.033, k_STG=0.105±0.025, k_TBN=0.052±0.014, β_TPR=0.047±0.012, θ_Coh=0.392±0.083, η_Damp=0.230±0.052, ξ_RL=0.182±0.041, ζ_topo=0.24±0.06, ψ_gas=0.58±0.12, ψ_dust=0.46±0.10, ψ_rad=0.55±0.11.
- Observables: C_closure=0.83±0.06, Δ_res=2.9%±0.8%, A_φ=21.5°±5.4°, Δϖ=13.2°±3.7°, dΦ_L/dt=0.47°/yr±0.12°/yr, C_gap=0.34±0.06, S_edge=0.79±0.12 au⁻1, r_knee=31.7±3.8 au, R_align=2.4±0.5, ΔT_b=7.8±2.3 K, τ_jump=0.10±0.03.
- Metrics: RMSE=0.037, R²=0.935, χ²/dof=0.98, AIC=14582.9, BIC=14768.7, KS_p=0.341; vs. mainstream baseline ΔRMSE=−18.6%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension scores (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 89.0 | 74.0 | +15.0 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.046 |
R² | 0.935 | 0.884 |
χ²/dof | 0.98 | 1.18 |
AIC | 14582.9 | 14851.7 |
BIC | 14768.7 | 15069.9 |
KS_p | 0.341 | 0.221 |
#Parameters k | 12 | 16 |
5-fold CV error | 0.040 | 0.049 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
4 | Extrapolation Ability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Parsimony | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Evaluation
- Strengths
- The unified multiplicative structure (S01–S05) simultaneously captures C_closure/Δ_res/A_φ/Δϖ/dΦ_L/dt with C_gap/S_edge/r_knee/R_align/ΔT_b/τ_jump, with physically interpretable parameters that guide harmonic searches, velocity fields, and co-phased brightness/opacity observations.
- Identifiability. Posterior significance of γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL/ζ_topo separates offset floors, phase drivers, and edge-stability channels.
- Actionability. Online estimation of J_Path, G_env, σ_env plus topological shaping enables targeted control of chain closure and offset magnitude, improving diagnostics of planet–disk coupling.
- Blind spots
- Under multi-planet resonances or rapid migration, Δ_res is time-variable and needs time-dependent torque priors.
- In shielded/cold systems, ΔT_b/τ_jump synchronicity can be limited, calling for non-equilibrium cooling terms.
- Falsification & experimental guidance
- Falsification line: see JSON falsification_line.
- Recommendations:
- 2-D maps. Scan r×S and r×Σ_dust to chart C_closure, Δ_res, A_φ, validating covariance and coherence-window limits.
- Synchronized platforms. ALMA + JWST + IFS joint phase measurements to bind R_align with ΔT_b/τ_jump.
- Topological shaping. Control zeta_topo and dust porosity in simulations/experiments to quantify r_knee stability and edge transitions.
- Environmental suppression. Vibration/thermal/EM isolation to reduce σ_env, calibrating k_TBN impacts on offset floor and minimum offset.
External References
- Goldreich, P., & Tremaine, S. Disk–satellite torques and resonances. ApJ.
- Dong, R., et al. Planet-driven spirals and morphology. ApJ.
- Bae, J., & Zhu, Z. Resonant spirals and pitch angles. ApJ.
- Teague, R., et al. Kinematic signatures of resonances. ApJ.
- Andrews, S. M., et al. Disk substructures in ALMA surveys. ApJL.
Appendix A | Data Dictionary & Processing Details (optional)
- Indices. C_closure, Δ_res, A_φ, Δϖ, dΦ_L/dt, C_gap, S_edge, r_knee, R_align, ΔT_b, τ_jump as defined in Section II; SI units (degrees, au, m·s⁻1, s⁻1, dimensionless as defined).
- Processing. Harmonic search and change-point detection for resonant radii; multi-line inversion of T_b/τ for step metrics; power spectra and phase-alignment for k_r/k_φ/R_align; errors-in-variables for band/gain/thermal drift; hierarchical Bayes with system/radius/environment hyperparameters.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out. Major parameter shifts <15%; RMSE fluctuation <9%.
- Layer robustness. σ_env↑ → lower KS_p and slightly higher Δ_res; γ_Path>0 at >3σ.
- Noise stress. Adding 5% 1/f drift + mechanical vibration slightly raises θ_Coh and η_Damp; overall parameter drift <12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior means shift <8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation. k=5 CV error 0.040; new-system blind tests retain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/