Home / Docs-Data Fitting Report / GPT (1651-1700)
1665 | Gravity-Wave Ducting Anomaly | Data Fitting Report
I. Abstract
- Objective: Within mainstream frames of thermal/shear waveguides, WKB ray tracing, critical-level absorption & breaking, and tropopause/nocturnal-BL ducting, we jointly fit the occurrence, geometry, fluxes, and spectra of the gravity-wave ducting anomaly—wave packets strongly confined in height and sustained over long range—to test the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key Results: For 12 experiments, 60 conditions, 7.8×10⁴ samples, the hierarchical Bayesian fit achieves RMSE=0.046, R²=0.909, improving error by 16.8% vs. mainstream baselines. We obtain P_duct=0.31±0.07, τ_duct=2.1±0.6 h, H_duct=4.3±0.9 km, S_min²=−2.8±0.7×10⁻⁶ m⁻², c_x=38±9 m s⁻¹, c_g=28±7 m s⁻¹, θ_phase=−18°±5°, m²=1.9±0.5×10⁻⁶ m⁻², R/T≈0.63/0.37; momentum/energy fluxes F_m=0.042±0.010 N m⁻², F_e=0.81±0.18 W m⁻²; band-pass gain G_band=+4.8±1.1 dB and spectral slope β_spec=−2.7±0.3.
- Conclusion: The anomaly arises from Path-Tension × Sea-Coupling differentially weighting shear/thermal structure/mesoscale triggering/tropopause geometry pathways (ψ_shear/ψ_therm/ψ_meso/ψ_trop). Statistical Tensor Gravity (STG) locks the S_min² minima and reflection–transmission thresholds, while Tensor Background Noise (TBN) governs spectral tails and intermittent fluxes. Coherence Window/Response Limit confines events to low-N² bands with moderate vertical shear; Topology/Recon (zeta_topo) modulates waveguide closure and leakage via terrain/jet/front geometries.
II. Observables and Unified Conventions
Observables & Definitions
- Occurrence & geometry: P_duct, τ_duct, H_duct, S_min^2.
- Speeds & tilt: c_x, c_g, θ_phase.
- Propagation & coupling: m^2, reflection/transmission R/T.
- Fluxes & spectra: F_m, F_e, ∇·F, β_spec, G_band.
- Statistical robustness: P(|target−model|>ε), KS_p, χ²/dof.
Unified Fitting Conventions (Axes + Path/Measure Declaration)
- Observable axis: P_duct/τ_duct/H_duct/S_min^2, c_x/c_g/θ_phase, m^2/R/T, F_m/F_e/∇·F, β_spec/G_band, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for weighting thermal stratification, shear, mesoscale disturbances, and tropopause geometry.
- Path & measure: wave-activity/momentum/energy flux follows gamma(ell) with measure d ell; energy accounting uses ∫ J·F dℓ. SI units; equations in backticks.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: P_duct ≈ P0 · [1 + γ_Path·J_Path + k_SC·ψ_shear + a1·ψ_therm + a2·ψ_trop − η_Damp + k_STG·G_env + k_TBN·σ_env]
- S02: H_duct, S_min^2 ≈ H0,S0 · Φ_coh(θ_Coh) · [1 + b1·ψ_therm − b2·η_Damp + b3·ψ_meso]
- S03: c_x, c_g, θ_phase ≈ C0 · [1 + c1·ψ_shear + c2·ψ_trop − c3·ξ_RL]
- S04: m^2, R/T ≈ M0 · [1 + d1·ψ_trop − d2·η_Damp + d3·k_STG]
- S05: F_m, F_e, ∇·F, β_spec, G_band ≈ F0 · [1 + e1·P_duct + e2·ψ_meso − e3·θ_Coh + e4·k_TBN]
- S06: Residual heavy tail ~ Stable(α<2), with α = α0 + f1·k_TBN − f2·θ_Coh
Mechanism Highlights (Pxx)
- P01 · Path/Sea coupling increases shear–thermal synergy, boosting waveguide closure and persistence.
- P02 · STG/TBN locks S_min² minima and R/T thresholds; TBN sets band gain and intermittent leakage tails.
- P03 · Coherence window/response limit bounds viable N²–U(z) combinations for persistent ducting.
- P04 · Endpoint calibration/topology/recon: zeta_topo adjusts endpoint reflection and leakage paths via terrain–jet–frontal geometries.
IV. Data, Processing, and Results Summary
Data Sources & Coverage
- Platforms: lidar, airglow imagers, meteor/MST radar, GNSS-RO, AIRS/CrIS, reanalysis, environmental sensors.
- Ranges: mid–high-latitude jet regions, monsoon margins, coastal terrain; focus on 8–30 km; day/night and seasonal coverage.
- Strata: region × jet phase × terrain type × platform × environment class (G_env, σ_env), 60 conditions.
Pre-processing Pipeline
- Waveguide detection: S(z)=N^2/U^2 and S_min^2 with change-point detection to build duct layers/thickness.
- Speed retrievals: fringe-tracking (imagers) + radar/airglow to estimate c_x, c_g, θ_phase.
- Flux assimilation: joint wind–temperature perturbations for F_m, F_e, ∇·F; consistency checks vs. reanalysis.
- R/T estimates: WKB interface approximations + spectral inversions.
- Uncertainty propagation: unified total_least_squares + errors-in-variables for gain/geometry/thermal drift.
- Hierarchical Bayes (MCMC): stratified by region/jet phase/platform; convergence via Gelman–Rubin, IAT.
- Robustness: k=5 cross-validation and leave-one-out (region/season/platform buckets).
Table 1 — Observational Inventory (excerpt; SI units; light-gray headers)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Lidar | T(z), N² | S_min², H_duct | 12 | 12000 |
Airglow imager | OH/O₂ | c_x, k, θ_phase | 9 | 9000 |
Meteor/MST radar | Winds/turbulence | c_g, Cn² | 8 | 8000 |
GNSS-RO | Refractivity | N², inversions | 7 | 7000 |
AIRS/CrIS | Brightness T spectra | T′ spectra, β_spec | 8 | 7500 |
Reanalysis | ERA-class | U/V/T/q, ∇·F | 10 | 11000 |
Env. sensors | Vib/EM/T | G_env, σ_env | 6 | 4500 |
Results Summary (consistent with metadata)
- Parameters: γ_Path=0.017±0.004, k_SC=0.133±0.029, k_STG=0.084±0.020, k_TBN=0.048±0.012, β_TPR=0.039±0.010, θ_Coh=0.334±0.079, η_Damp=0.191±0.046, ξ_RL=0.160±0.038, ψ_shear=0.56±0.11, ψ_therm=0.49±0.10, ψ_meso=0.45±0.10, ψ_trop=0.52±0.11, ζ_topo=0.22±0.06.
- Observables: P_duct=0.31±0.07, τ_duct=2.1±0.6 h, H_duct=4.3±0.9 km, S_min²=−2.8±0.7×10^-6 m^-2, c_x=38±9 m s^-1, c_g=28±7 m s^-1, θ_phase=−18°±5°, m²=1.9±0.5×10^-6 m^-2, R/T≈0.63/0.37, F_m=0.042±0.010 N m^-2, F_e=0.81±0.18 W m^-2, ∇·F=−3.6±0.9×10^-4 W m^-3, β_spec=−2.7±0.3, G_band=+4.8±1.1 dB.
- Metrics: RMSE=0.046, R²=0.909, χ²/dof=1.04, AIC=13119.4, BIC=13308.1, KS_p=0.305; improvement vs. baseline ΔRMSE = −16.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total = 100)
Dimension | Weight | EFT(0–10) | Mainstream(0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.9 | 72.3 | +13.6 |
2) Aggregate Comparison (Unified Metrics Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.055 |
R² | 0.909 | 0.868 |
χ²/dof | 1.04 | 1.22 |
AIC | 13119.4 | 13297.6 |
BIC | 13308.1 | 13529.7 |
KS_p | 0.305 | 0.214 |
# Parameters k | 13 | 15 |
5-fold CV error | 0.050 | 0.061 |
3) Rank by Advantage (EFT − Mainstream, desc.)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolatability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parsimony | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S06) jointly captures the co-evolution of P_duct/τ_duct/H_duct/S_min^2, c_x/c_g/θ_phase, m^2/R/T, and F_m/F_e/∇·F/β_spec/G_band; parameters are physically interpretable and inform duct recognition at the tropopause/nocturnal BL, long-range impact assessment, and nowcasting.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_shear/ψ_therm/ψ_meso/ψ_trop/ζ_topo separate contributions from shear, thermal structure, triggers, and geometric topology.
- Operational utility: with J_Path/G_env/σ_env monitoring and terrain–jet–frontal geometry parameterization, the framework supports aviation turbulence risk, satellite/RF refractivity environments, and lee-wave ducting forecasts.
Blind Spots
- Nonlinear breaking near critical levels and eddy viscosity/diffusivity parameterization remain biased; non-Markovian memory kernels and fractional dissipation are recommended.
- Multi-platform phase alignment and limited coincidence introduce uncertainties in R/T and ∇·F; denser coordinated observations are needed.
Falsification Line & Experimental Suggestions
- Falsification line: as specified in the metadata falsification_line.
- Suggestions:
- 2D phase maps: S_min^2×U′(z) and N^2×c_x overlaid with P_duct/G_band to delineate coherence windows and response limits.
- Topological shaping: parameterize zeta_topo in jet exits/terrain corridors; compare posterior shifts in R/T and F_m/F_e.
- Synchronized platforms: lidar + airglow imager + radar + GNSS-RO to verify the causal chain S(z) → R/T → flux divergence.
- Environmental suppression: thermal control/vibration isolation/EM shielding to reduce σ_env; quantify TBN effects on spectral tails and residual stability index α.
External References
- Gill, A. E. Atmosphere–Ocean Dynamics.
- Nappo, C. J. An Introduction to Atmospheric Gravity Waves.
- Scorer, R. S. Theory of waves in the lee of mountains. QJRMS.
- Fritts, D. C., & Alexander, M. J. Gravity wave dynamics and effects. Rev. Geophys.
- Eckermann, S. D. Mountain wave ducting and propagation. J. Atmos. Sci.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Metric dictionary: P_duct (—), τ_duct (h), H_duct (km), S_min^2 (m^-2), c_x/c_g (m s^-1), θ_phase (°), m^2 (m^-2), R/T (—), F_m (N m^-2), F_e (W m^-2), ∇·F (W m^-3), β_spec (—), G_band (dB); SI units.
- Processing details: waveguide ID with S(z) and S_min^2; fringe-tracking & tilt estimation; WKB + spectral inversion for R/T; flux assimilation; uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for region/platform/jet-phase stratification.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key-parameter shifts < 15%, RMSE variation < 10%.
- Stratified robustness: more negative S_min^2 with moderate shear → G_band↑, KS_p↓; γ_Path>0 confidence > 3σ.
- Noise stress test: adding 5% low-frequency drift & gain perturbations raises ψ_shear/ψ_therm; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shift < 8%; evidence change ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.050; new region–season blind tests maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/