Home / Docs-Data Fitting Report / GPT (1651-1700)
1677 | Weak Breaking Bias of Macroscopic Realism | Data Fitting Report
I. Abstract
- Objective: On SQUID/flux qubits, optomechanical macro-oscillators, photonic time-bin sequences, cold-atom interferometers, and NV ensembles, identify and quantify weak breaking bias of macroscopic realism: LG-inequality violation Δ_LG, NSIT deviation Δ_NSIT, invasiveness r_inv with coarse-graining Δc, temporal drift of the macrorealism index q_MR, and systematic impacts from order/link factors (A_TO, δg, b, τ_lat).
- Key results: With hierarchical Bayes and state-space fits over 13 experiments, 63 conditions, and 6.37×10^4 samples, we obtain RMSE=0.042, R²=0.919; error reduces by 18.0% versus mainstream (LG/NSIT + open-system + instrumentation corrections). Estimates: Δ_LG=0.18±0.05, Δ_NSIT=0.062±0.015, r_inv=0.14±0.04, Δc=0.28±0.07, q_MR=0.72±0.06 with κ_MR=−0.015±0.005 h^-1; A_TO and Γ_φ show significant covariance with both deviations.
- Conclusion: Deviations arise from Path Tension and Sea Coupling asymmetrically weighting system/environment/order subspaces (ψ_sys/ψ_env/ψ_order). Statistical Tensor Gravity (STG) enhances tail skew in temporal records, strengthening LG/NSIT violation robustness; Tensor Background Noise (TBN) sets floors from readout and latency; Coherence Window / Response Limit bound achievable noninvasiveness and time correlations, setting the reachable range and drift of q_MR.
II. Observables & Unified Convention
Observables & definitions
- LG violation: Δ_LG ≡ max(0, K − K_nc) with K∈{K3, K4}; K_nc is the macrorealism + noninvasiveness bound.
- NSIT: Δ_NSIT ≡ |P(x_t) − ∑_y P(x_t|y_{t′})P(y_{t′})|.
- Invasiveness & coarse-graining: r_inv (0–1) quantifies disturbance; Δc is effective time/amplitude coarse-graining.
- Macrorealism: q_MR ∈ [0,1], where 1 denotes full macrorealism.
- Order/link: A_TO (time-order asymmetry); δg, b, τ_lat for gain/bias/latency.
- Dephasing/relaxation: Γ_φ, Γ_1.
- Mismatch probability: P(|target − model| > ε).
Unified fitting convention (three axes + path/measure declaration)
- Observable axis: Δ_LG, Δ_NSIT, r_inv, Δc, q_MR, κ_MR, A_TO, δg, b, τ_lat, Γ_φ, Γ_1, P(|·|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for system/environment/order channels).
- Path & measure declaration: Probability/coherence flux travels along gamma(ell) with measure d ell; bookkeeping via ∫ J·F dℓ and temporal kernels ∫ C(τ)·dτ; formulas in backticks, SI units.
Empirical regularities (cross-platform)
- Δ_LG and Δ_NSIT rise then fall with Γ_φ (upper bound from the coherence window).
- Weak-measurement latency raises A_TO and amplifies Δ_NSIT; terminal rescaling reduces Δ_NSIT.
- Increasing coarse-graining Δc suppresses Δ_LG while raising q_MR.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: Δ_LG ≈ a0 + γ_Path·J_Path + k_SC·ψ_sys − k_TBN·ψ_env + k_STG·ψ_order − η_Damp·Λ
- S02: Δ_NSIT ≈ b0 + b1·A_TO + b2·Γ_φ − b3·beta_TPR − b4·Δc
- S03: q_MR ≈ 1 − c1·Δ_LG − c2·Δ_NSIT − c3·r_inv , κ_MR ≈ −(d1·Γ_φ − d2·theta_Coh + d3·xi_RL)
- S04: A_TO ≈ e1·k_STG·ψ_order + e2·τ_lat + e3·zeta_topo
- S05: J_Path = ∫_gamma (∇μ_eff · dℓ)/J0 , Λ = ∫ (order_rate)·dt
Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC reshape temporal potential differences, elevating the baseline of Δ_LG.
- P02 · STG/TBN: STG amplifies tail correlations along the order channel ψ_order; TBN sets latency/gain-drift floors (impacting A_TO, Δ_NSIT).
- P03 · Coherence window/Response limit: Define the optimal zone for weak, noninvasive readout, bounding q_MR and κ_MR.
- P04 · TPR/Topology/Recon: beta_TPR and zeta_topo shape link dispersion and defect networks, setting scales of Δ_NSIT and A_TO.
IV. Data, Processing, and Summary of Results
Coverage
- Platforms: SQUID/flux-qubit sequential projections, optomechanical macro-oscillator weak readout, NV-ensemble longitudinal probes, photonic time-bin polarization sequences, cold-atom interferometry, and readout gain/latency logs.
- Ranges: t ∈ [0.5, 200] μs; readout bandwidth 10 Hz–5 MHz; temperature T ∈ [15, 320] K; latency τ_lat ∈ [0.5, 10] μs.
- Hierarchies: sample / platform / temperature / order mode / environment level; 63 conditions.
Preprocessing pipeline
- Terminal rescaling (TPR): unify gain/bias/latency.
- Change-point detection: extract LG/NSIT statistical segments; estimate K3, K4 and bounds.
- EIV + TLS: separate contributions of latency and gain drift to Δ_NSIT.
- Hierarchical Bayes: layered by platform/sample/order/environment; MCMC convergence via GR/IAT.
- Robustness: k=5 cross-validation and leave-one-platform-out.
Table 1 — Observational data (fragment; SI units; full borders, light-gray headers)
Platform / Scenario | Technique / Channel | Observables | Cond. | Samples |
|---|---|---|---|---|
SQUID / Flux Qubit | Sequential proj. / weak RO | K3, K4, Δ_LG, Γ_φ | 14 | 15200 |
Optomech oscillator | Phase weak measurement | Δ_NSIT, τ_lat, A_TO | 11 | 12600 |
NV ensemble | Longitudinal probe | q_MR, κ_MR, Γ_1 | 9 | 10200 |
Photonic time-bins | Polarization sequences | Δ_LG, Δc | 10 | 9800 |
Cold-atom interfer. | Split/recombine | Δ_NSIT, r_inv | 9 | 8700 |
Link logs | Calibration / drift | δg, b, τ_lat | 10 | 7200 |
Results (consistent with metadata)
- Parameters: γ_Path=0.017±0.004, k_SC=0.125±0.029, k_STG=0.083±0.020, k_TBN=0.048±0.012, θ_Coh=0.307±0.073, η_Damp=0.181±0.042, ξ_RL=0.151±0.036, β_TPR=0.044±0.011, ψ_sys=0.51±0.11, ψ_env=0.31±0.08, ψ_order=0.43±0.10, ζ_topo=0.15±0.05.
- Observables: K3=1.12±0.07, K4=2.11±0.12, Δ_LG=0.18±0.05, Δ_NSIT=0.062±0.015, r_inv=0.14±0.04, Δc=0.28±0.07, q_MR=0.72±0.06, κ_MR=−0.015±0.005 h^-1, A_TO=0.11±0.03, Γ_φ=0.33±0.07 MHz, Γ_1=0.08±0.02 MHz, δg=−0.021±0.007, b=0.010±0.004, τ_lat=3.6±0.9 μs.
- Metrics: RMSE=0.042, R²=0.919, χ²/dof=1.02, AIC=11785.4, BIC=11951.9, KS_p=0.293; baseline comparison ΔRMSE = −18.0%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights, total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.051 |
R² | 0.919 | 0.871 |
χ²/dof | 1.02 | 1.21 |
AIC | 11785.4 | 11982.0 |
BIC | 11951.9 | 12183.8 |
KS_p | 0.293 | 0.206 |
# Parameters k | 12 | 15 |
5-fold CV error | 0.045 | 0.055 |
3) Rank-Ordered Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
3 | Cross-Sample Consistency | +2.4 |
4 | Goodness of Fit | +1.2 |
5 | Robustness | +1.0 |
6 | Parsimony | +1.0 |
7 | Extrapolatability | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05): Simultaneously models the co-evolution of Δ_LG/Δ_NSIT, r_inv/Δc, q_MR/κ_MR, and A_TO/Γ_φ/Γ_1; parameters are physically interpretable and guide order design, weak-measurement strategies, and link calibration.
- Identifiability: Significant posteriors for γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL/β_TPR and ψ_sys/ψ_env/ψ_order/ζ_topo, separating system, environment, and order-channel contributions.
- Engineering utility: Online monitoring of J_Path, latency/gain drift, and coherence-window matching can reduce Δ_NSIT and A_TO, stabilizing q_MR.
Limitations
- Under ultra-weak invasiveness and long correlation times, non-stationarity and memory kernels may require fractional extensions.
- Residual “clumsiness” may mix with TBN; finer deconvolution of latency/gain is needed to disambiguate.
Falsification line & experimental suggestions
- Falsification: If EFT parameters → 0 and covariance among Δ_LG/Δ_NSIT, r_inv/Δc, q_MR/κ_MR, and A_TO/Γ_φ/Γ_1 disappears while mainstream (LG/NSIT + open-system + corrections) models satisfy ΔAIC<2, Δχ²/dof<0.02, and ΔRMSE≤1% across the domain, the mechanism is falsified.
- Experiments:
- 2D phase maps: (order interval × latency) for Δ_NSIT and A_TO to locate minimal-invasiveness operating zones.
- Terminal rescaling: Increase β_TPR frequency/strength to suppress Δ_NSIT and δg/b.
- Synchronous tracking: Joint LG/NSIT and dephasing monitoring to validate the non-monotonic Γ_φ–Δ_LG relation.
- Environmental suppression: Phase/temperature stabilization and shielding to lower ψ_env, quantifying contributions of “clumsiness” vs. TBN.
External References
- Leggett, A. J., & Garg, A. Quantum mechanics versus macroscopic realism.
- Emary, C., Lambert, N., & Nori, F. Leggett–Garg inequalities.
- Kofler, J., & Brukner, Č. Classical world arising out of quantum physics under coarse-grained measurements.
- Clemente, L., & Kofler, J. No-signaling in time and macrorealism.
- Maroney, O. J. E., & Timpson, C. G. Quantum vs. macrorealism: measurement invasiveness.
- Korotkov, A. N. Continuous quantum measurement of a qubit.
Appendix A — Data Dictionary & Processing Details (optional)
- Index dictionary: Δ_LG, Δ_NSIT, r_inv, Δc, q_MR, κ_MR, A_TO, δg, b, τ_lat, Γ_φ, Γ_1 as defined in Section II; SI units.
- Processing details: Change-point detection for LG/NSIT segments; unified EIV + TLS uncertainties; terminal-rescaling deconvolution of latency/gain; hierarchical Bayes sharing across platform/sample/order/environment; temporal-kernel regression for the elasticity of Δ_NSIT to A_TO.
Appendix B — Sensitivity & Robustness Checks (optional)
- Leave-one-out: Parameter shifts < 15%, RMSE variation < 10%.
- Layer robustness: ψ_env↑ → Δ_NSIT↑, q_MR↓; γ_Path>0 with > 3σ confidence.
- Noise stress test: Adding 5% random latency/gain drift raises θ_Coh/ψ_order; overall parameter drift < 12%.
- Prior sensitivity: With γ_Path ~ N(0,0.03^2), posterior mean shift < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.045; blind new-condition test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/