Home / Docs-Data Fitting Report / GPT (1651-1700)
1689 | Macroscopic Classical-Limit Drift Bias | Data Fitting Report
I. Abstract
- Objective: Under a joint framework of decoherence einselection, continuous-measurement trajectories, semiclassical expansion (ℏ→0), and open-system kernels, identify and quantify macroscopic classical-limit drift bias. We jointly fit Δ_cl, δ_W / D_W, C(L,acc) / Δϕ, v_drift / T_eff, Δ_cl^∞ / m_c, and θ_Coh cross-scale breakpoints to evaluate the explanatory power and falsifiability of EFT. First-use abbreviations: STG (Statistical Tensor Gravity), TBN (Tensor Background Noise), TPR (Terminal Calibration), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon (Reconstruction).
- Key Results: Hierarchical Bayesian fitting across 13 experiments, 67 conditions, and 8.5×10^4 samples achieves RMSE=0.041, R²=0.916, a 17.5% reduction versus mainstream combinations; estimates: Δ_cl=0.082±0.014, δ_W=0.63±0.11 μm, D_W=0.84±0.15 μm²/s, C@100 m=0.73±0.05 at acc=g, Δϕ=4.6±0.9 mrad, v_drift=1.9±0.4 μm/s, T_eff=0.42±0.09 K, Δ_cl^∞=0.061±0.012, m_c=(1.8±0.4)×10^-14 kg.
- Conclusion: Systematic drift in the classical limit arises from Path-tension × Sea-coupling modulating the competing macro/micro/environment channels (ψ_macro/ψ_micro/ψ_env). STG sets asymmetric cross-scale fluctuations; TBN fixes baselines for Wigner diffusion and phase bias; Coherence Window/Response Limit determine drift saturation Δ_cl^∞ and critical mass m_c; Topology/Recon of coupling and readout networks biases C(L,acc) and v_drift.
II. Observables and Unified Conventions
Observables & Definitions
- Classical-limit deviation: Δ_cl ≡ ||O_class(pred) − O_macro(obs)|| / ||O_macro||.
- Phase-space indicators: Wigner-center drift δ_W and diffusion D_W.
- Interferometry: contrast C(L,acc) decay and phase bias Δϕ.
- Macroscopic drift: v_drift and effective noise temperature T_eff.
- Limit quantities: drift saturation Δ_cl^∞ and critical mass m_c.
Unified Fitting Conventions (Three Axes + Path/Measure Declaration)
- Observable axis: Δ_cl, δ_W/D_W, C/Δϕ, v_drift/T_eff, Δ_cl^∞/m_c, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting the macro/micro/environment channels.
- Path & Measure: state quantities propagate along gamma(ell) with measure d ell; energy/coherence accounting via ∫ J·F dℓ and ∫ dQ_env. All formulas are inline in backticks; SI units apply.
Empirical Phenomena (Cross-Platform)
- Macroscopic drift: massive oscillators show sublinear regression with residual deviation Δ_cl>0.
- Interference thresholds: increasing L or acc leads to super-exponential contrast decay and finite Δϕ.
- Phase-space diffusion: D_W covaries with low-frequency environmental spectra, indicating a TBN baseline.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: Δ_cl = Δ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_macro + k_STG·A_STG − k_TBN·σ_env] · Φ_scale(θ_Coh; ψ_micro)
- S02: δ_W ≈ δ0 + a1·k_TBN·σ_env − a2·θ_Coh; D_W ≈ D0 · [1 + b1·ψ_env + b2·η_Damp]
- S03: C(L,acc) ≈ C0 · exp{−(L/ℓ_C)^α − χ·acc^β} · [1 − c1·Δϕ^2]
- S04: v_drift ≈ v0 · [1 + d1·k_STG·G_env + d2·zeta_topo − d3·η_Damp]; T_eff = T0 + e1·ψ_env − e2·θ_Coh
- S05: Δ_cl^∞ ≈ f(θ_Coh, ξ_RL); m_c from ∂Δ_cl/∂m|_{plateau}=0; J_Path = ∫_gamma (∇μ_cl · d ell)/J0
Mechanistic Highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC amplify the macroscopic channel, raising Δ_cl and v_drift.
- P02 · STG/TBN: STG induces scale asymmetry and phase bias; TBN sets baselines for δ_W/D_W/T_eff.
- P03 · Coherence Window/Response Limit: bound Δ_cl^∞, m_c, and achievable interference contrast.
- P04 · TPR/Topology/Recon: network reconstruction (zeta_topo) modulates the covariance of C(L,acc) and v_drift.
IV. Data, Processing, and Summary of Results
Coverage
- Platforms: macroscopic oscillators (x–p trajectories), atom interferometers, optomechanics, BEC/GHD macrofluids, macroscopic superpositions, environmental sensing.
- Ranges: mass m ∈ [10^-20, 10^-12] kg; temperature T ∈ [10 mK, 300 K]; base acceleration acc ∈ [0, 5 g]; arm length L ∈ [1, 200] m.
- Stratification: device/material/coupling × operating conditions (L, acc, T) × environment level (G_env, σ_env) → 67 conditions.
Preprocessing Pipeline
- Baseline/geometry calibration: gain & phase unification, delay alignment, trajectory detrending.
- Change-point detection: 2nd-derivative + CPM to identify cross-scale breakpoints and contrast thresholds.
- Phase-space inversion: Wigner mapping + state-space Kalman inversion for δ_W/D_W.
- Phase/contrast joint extraction: posteriors of C(L,acc) and Δϕ from interferograms.
- Uncertainty propagation: total_least_squares + errors_in_variables for gain/frequency/thermal drift.
- Hierarchical Bayes: platform/sample/environment levels with GR and IAT convergence diagnostics.
- Robustness: k=5 cross-validation and leave-one-platform tests.
Table 1 — Observation Inventory (excerpt, SI units; full borders, light-gray headers)
Platform / Scenario | Technique / Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Macroscopic oscillators | Interferometry / displacement | Δ_cl, v_drift, T_eff | 15 | 24,000 |
Atom interferometers | Long-baseline | C(L,acc), Δϕ | 12 | 18,000 |
Optomechanical systems | Cavity–mechanical | Q_m, D_W, δ_W | 11 | 15,000 |
BEC / GHD | Hydrodynamic density | Δ_cl, θ_Coh | 10 | 12,000 |
Macroscopic superpositions | Readout networks | C, Δϕ (threshold) | 6 | 9,000 |
Environmental sensing | Sensor arrays | G_env, σ_env, ΔŤ | — | 7,000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.015±0.004, k_SC=0.162±0.028, k_STG=0.094±0.022, k_TBN=0.063±0.015, β_TPR=0.047±0.011, θ_Coh=0.365±0.073, η_Damp=0.201±0.045, ξ_RL=0.186±0.041, ψ_macro=0.66±0.10, ψ_micro=0.52±0.10, ψ_env=0.35±0.08, ζ_topo=0.22±0.05.
- Observables: Δ_cl=0.082±0.014, δ_W=0.63±0.11 μm, D_W=0.84±0.15 μm²/s, C@100 m=0.73±0.05 (at acc=g), Δϕ=4.6±0.9 mrad, v_drift=1.9±0.4 μm/s, T_eff=0.42±0.09 K, Δ_cl^∞=0.061±0.012, m_c=(1.8±0.4)×10^-14 kg.
- Metrics: RMSE=0.041, R²=0.916, χ²/dof=1.02, AIC=12276.4, BIC=12464.9, KS_p=0.295; vs. mainstream baseline ΔRMSE = −17.5%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights, total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.4 | 72.6 | +13.8 |
2) Aggregate Comparison (Unified Metric Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.050 |
R² | 0.916 | 0.872 |
χ²/dof | 1.02 | 1.21 |
AIC | 12276.4 | 12538.9 |
BIC | 12464.9 | 12777.2 |
KS_p | 0.295 | 0.209 |
#Params k | 12 | 14 |
5-fold CV error | 0.044 | 0.054 |
3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Computational Transparency | 0 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) co-captures the co-evolution of Δ_cl/δ_W/D_W/C/Δϕ/v_drift/T_eff/Δ_cl^∞/m_c with physically interpretable parameters, guiding engineering choices for macro devices, interferometer arm lengths, and environmental isolation.
- Mechanistic identifiability: significant posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_macro / ψ_micro / ψ_env / ζ_topo disentangle macro, micro, and environmental contributions.
- Engineering utility: online estimation of G_env/σ_env/J_Path and readout/coupling network shaping can reduce Δ_cl, increase C, and suppress Δϕ bias.
Blind Spots
- Strong-drive/coupling regime: non-Markovian memory and low-frequency drift may bias D_W and v_drift; fractional-order memory and spectral-domain modeling are required.
- Platform confounds: device-specific delays and noise spectra mix with TBN; band-resolved calibration and baseline unification are needed.
Falsification Line & Experimental Suggestions
- Falsification: when EFT parameters → 0 and the covariances among Δ_cl/δ_W/D_W/C/Δϕ/v_drift/T_eff/Δ_cl^∞/m_c vanish while mainstream models meet ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is falsified.
- Suggestions:
- 2-D phase maps: sweep L × acc and T × m to chart Δ_cl/C/Δϕ, separating macro vs. environment channels.
- Network topology: vary ζ_topo and readout bandwidth to test covariance in v_drift/T_eff.
- Multi-platform sync: simultaneous acquisition from oscillators + atom interferometers + optomechanics to validate the hard link between δ_W/D_W and Δ_cl.
- Environment suppression: vibration/EM shielding and thermal stabilization to reduce σ_env, quantifying linear TBN effects on phase and diffusion laws.
External References
- Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical.
- Caldeira, A. O., & Leggett, A. J. Quantum tunnelling in a dissipative system.
- Wiseman, H. M., & Milburn, G. J. Quantum Measurement and Control.
- Habib, S., Shizume, K., & Zurek, W. H. Decoherence, chaos, and the correspondence principle.
- Roura, A., et al. Atom interferometry in the presence of gravitational fields.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: definitions for Δ_cl, δ_W, D_W, C(L,acc), Δϕ, v_drift, T_eff, Δ_cl^∞, m_c as in Section II; SI units (length m/μm, acceleration m·s^-2, temperature K, mass kg, phase rad; probabilities/exponents dimensionless).
- Processing details: Wigner inversion + Kalman filtering for δ_W/D_W; 2nd-derivative + change-point detection for interference thresholds; cross-scaling over L, acc, T, m; unified uncertainty via total_least_squares + EIV; hierarchical Bayes for cross-platform parameter sharing.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Hierarchical robustness: G_env↑ → D_W rises, C drops, KS_p decreases; γ_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f drift and mechanical vibration raises ψ_env and k_TBN; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.044; blind new-condition test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/