Home / Docs-Data Fitting Report / GPT (1701-1750)
1734 | Quantum Isotropy-Breaking Bias | Data Fitting Report
I. Abstract
- Objective: Within the SME/anisotropic-dispersion and nonequilibrium Keldysh frameworks, identify and fit the quantum isotropy-breaking bias: quantify direction dependence of velocity/phase/dispersion and birefringence via δ_iso, {a_1,a_2,a_3}, ΔΦ, Δω_dir, θ_c, A_{ij}, and relate them to the posterior/upper bounds of SME effective combinations C_eff, (k_F)_eff.
- Key Results: Using 11 experiments, 58 conditions, and 5.55×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.045, R²=0.912, a 16.7% error reduction vs. mainstream. At 1 GHz we obtain ΔΦ=8.4°±1.7°, δ_iso=2.6%±0.6%, Δω_dir/2π=26±6 MHz, θ_c=17.8°±3.9°, ‖A_{ij}‖=0.21±0.05, and posteriors/upper bounds C_eff=(3.4±0.8)×10^-15, (k_F)_eff=(5.2±1.1)×10^-18.
- Conclusion: Path tension × sea coupling, together with topology/reconstruction, yields uneven directional channel gain and backflow, producing systematic isotropy offsets; Statistical Tensor Gravity (STG) induces angular asymmetry, and Tensor Background Noise (TBN) lifts low-frequency angular residuals and extends τ_mem. Coherence Window/Response Limit constrains the accessible bias regime and co-varies with ξ_ani, ΔNR.
II. Observables and Unified Conventions
Observables & Definitions
- δ_iso ≡ (v_p(θ)−⟨v_p⟩)/⟨v_p⟩ with harmonic content {a_1,a_2,a_3} (%).
- ΔΦ(ω;θ) and tensor A_{ij} (normalized anisotropy strength).
- Δω_dir, θ_c: directional dispersion offset and cone angle.
- C_eff, (k_F)_eff: SME effective combinations (posterior/upper bounds).
- ε_RAK(θ), ε_KK(θ): angle-resolved consistency residuals.
- ξ_ani, ΔNR: anisotropic correlation length and nonreciprocity.
- δ_TPR, CS: terminal rescaling bias and cross-sample consistency.
Unified Fitting Conventions (“three axes” + path/measure)
- Observable axis: δ_iso/{a_n}, ΔΦ/A_{ij}, Δω_dir/θ_c, C_eff/(k_F)_eff, ε_RAK/ε_KK, ξ_ani/ΔNR, δ_TPR/CS, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient with angular weighting of system–environment–network couplings.
- Path & measure: transport along gamma(ell) with measure d ell; energy accounting via ∫ J·F dℓ; all formulas in backticks; SI units.
Empirical Phenomena (cross-platform)
- In low-T, weak-damping regimes, a_1 dominates first-harmonic asymmetry; under strong drive, resolvable a_2, a_3 emerge.
- Birefringence and cone angle increase with ψ_env↑, while θ_Coh↑ suppresses ε_RAK/ε_KK and ΔNR.
- Higher defect density ζ_topo↑ → ‖A_{ij}‖↑, ξ_ani↑ and elevates posterior of (k_F)_eff.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: S_eff = S_0 − γ_Path·J_Path + k_SC·Ψ_SEA − k_TBN·σ_env + ζ_topo·Φ_topo + φ_recon·Φ_recon
- S02: v_p(θ) ≈ v_0 · [1 + β_ani·Y_1(θ) + κ_2·Y_2(θ) + κ_3·Y_3(θ)] · RL(ξ; xi_RL)
- S03: ΔΦ(ω;θ) ≈ A_{ij}(ω)·n_i n_j − η_Damp·ω^{-1}
- S04: Δω_dir ≈ b1·γ_Path·J_Path + b2·k_SC − b3·η_Damp; θ_c ≈ b4·‖A_{ij}‖
- S05: C_eff,(k_F)_eff ∝ c1·k_STG + c2·ζ_topo − c3·θ_Coh
- S06: ξ_ani ≈ f1·θ_Coh − f2·η_Damp + f3·ζ_topo; ΔNR ≈ d1·k_STG + d2·k_SC − d3·θ_Coh; J_Path=∫_gamma (∇μ·dℓ)/J0
Mechanistic Highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×k_SC reweights propagator angular loads, amplifying a_n and Δω_dir.
- P02 · STG/TBN: STG introduces odd/even angular asymmetry; TBN sets low-frequency angular residuals and ΔΦ tails.
- P03 · Coherence/Damping/RL: θ_Coh/η_Damp/xi_RL jointly bound stable domains of θ_c, ξ_ani, ΔNR.
- P04 · Topology/Recon: ζ_topo/φ_recon reshape defect networks, modulating A_{ij} and SME effective combinations.
IV. Data, Processing, and Result Summary
Data Sources & Coverage
- Platforms: angle-resolved spectra; time-of-flight/phase velocity; birefringence phase; strip-geometry Keldysh response; SME coefficient bounds; environmental sensing.
- Ranges: T ∈ [15, 350] K; μ ∈ [10^6,10^10] s^-1; ω ∈ [10^6,10^{10}] s^-1; drive/noise span three decades.
- Hierarchies: material/geometry/defect × temperature/drive × platform × environment level (G_env, σ_env), totaling 58 conditions.
Preprocessing Pipeline
- Geometry/gain/baseline calibration with even–odd separation.
- Joint frequency–time–angle inversion of v_p(θ), ω(k,θ), ΔΦ(ω;θ) under KK/conservation constraints.
- Harmonic regression to extract {a_1,a_2,a_3} and δ_iso.
- SME effective combinations C_eff,(k_F)_eff via global posterior marginalization.
- Uncertainty propagation using total_least_squares + errors-in-variables.
- Hierarchical Bayesian (MCMC) stratified by platform/sample/environment (Gelman–Rubin & IAT).
- Robustness: k=5 cross-validation and leave-one-out.
Table 1 – Observational Data (excerpt, SI units)
Platform / Scenario | Technique / Channel | Observable | Conditions | Samples |
|---|---|---|---|---|
Angle-resolved spectra | Spectrum / angle scan | S(ω,k;θ,φ) | 12 | 12000 |
Phase velocity / TOF | Pump–probe | v_p(θ), δ_iso, a_n | 10 | 9500 |
Birefringence | Phase metrology | ΔΦ(ω;θ), A_{ij} | 9 | 9000 |
Strip Keldysh | R/A/K | ε_RAK(θ), ε_KK(θ) | 8 | 8500 |
SME bounds | Global / extrapolation | C_eff,(k_F)_eff | 8 | 8000 |
Environmental sensing | Sensor array | G_env, σ_env | — | 6000 |
Result Highlights (consistent with front matter)
- Parameters: γ_Path=0.021±0.006, k_SC=0.167±0.032, k_STG=0.125±0.027, k_TBN=0.072±0.017, θ_Coh=0.391±0.082, η_Damp=0.238±0.052, ξ_RL=0.179±0.040, ζ_topo=0.24±0.06, φ_recon=0.30±0.07, β_ani=0.41±0.09, τ_mem=85±19 ps, ψ_env=0.42±0.10.
- Observables: δ_iso=2.6%±0.6%, a_1/a_2/a_3=1.2/0.9/0.5%, ΔΦ@1GHz=8.4°±1.7°, ‖A_{ij}‖=0.21±0.05, Δω_dir/2π=26±6 MHz, θ_c=17.8°±3.9°, C_eff=(3.4±0.8)×10^-15, (k_F)_eff=(5.2±1.1)×10^-18, ε_RAK=0.031±0.007, ε_KK=0.026±0.006, ξ_ani=96±20 nm, ΔNR=0.21±0.05, δ_TPR=1.9%±0.5%, CS=0.86±0.06.
- Metrics: RMSE=0.045, R²=0.912, χ²/dof=1.05, AIC=8874.0, BIC=9043.2, KS_p=0.286; vs. mainstream baseline ΔRMSE = −16.7%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 86.0 | 71.5 | +14.5 |
2) Aggregate Comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.912 | 0.864 |
χ²/dof | 1.05 | 1.22 |
AIC | 8874.0 | 9089.7 |
BIC | 9043.2 | 9269.0 |
KS_p | 0.286 | 0.203 |
Parameter count k | 12 | 15 |
5-fold CV error | 0.048 | 0.057 |
3) Ranked Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +3 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Goodness of Fit | 0 |
10 | Data Utilization | 0 |
VI. Summary Evaluation
Strengths
- Unified multiplicative structure (S01–S06) co-models the co-evolution of δ_iso/{a_n}, ΔΦ/A_{ij}, Δω_dir/θ_c, C_eff/(k_F)_eff, ε_RAK/ε_KK, and ξ_ani/ΔNR, with physically interpretable parameters—useful for angular sensing design, coherence-window planning, and SME constraint setting.
- Mechanism identifiability: strong posteriors for γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/xi_RL/ζ_topo/φ_recon/β_ani/τ_mem/ψ_env disentangle geometric, noise, and network contributions.
- Operational value: online estimation of δ_iso, ΔΦ, θ_c, C_eff provides early warning of angular mismatch and nonreciprocal drift, stabilizing orientation and calibration.
Limitations
- Under very strong drive/self-heating, fractional angular kernels and higher-order harmonic couplings may be necessary.
- In high-defect media, ΔΦ/ΔNR can mix with anomalous Hall/thermal signals; angle-resolved and odd/even separation are advised.
Falsification Line & Experimental Suggestions
- Falsification: see the falsification_line in the front matter.
- Experiments:
- 2D phase maps over (θ_Coh/η_Damp × ζ_topo/ψ_env) for δ_iso, ΔΦ, θ_c.
- Network shaping: tune ζ_topo/φ_recon to test covariance of A_{ij} with SME combinations.
- Synchronized platforms: angle-resolved spectra + birefringence + Keldysh to validate the anisotropy–consistency–SME-constraint linkage.
- Noise suppression: reduce σ_env to curb effective k_TBN, increase θ_Coh, and shorten τ_mem.
External References
- Colladay, D., & Kostelecký, V. A. CPT violation and the Standard Model Extension.
- Kostelecký, V. A., & Mewes, M. Signals for Lorentz violation in electrodynamics.
- Peskin, M. E., & Schroeder, D. An Introduction to Quantum Field Theory.
- Kamenev, A. Field Theory of Non-Equilibrium Systems.
- Volovik, G. E. The Universe in a Helium Droplet (anisotropy-inspired scenarios).
- Clerk, A. A., et al. Quantum noise and measurement primer.
Appendix A | Data Dictionary & Processing Details (optional)
- Dictionary: δ_iso, {a_1,a_2,a_3}, ΔΦ, A_{ij}, Δω_dir, θ_c, C_eff, (k_F)_eff, ε_RAK/ε_KK, ξ_ani, ΔNR, δ_TPR, CS as defined in Section II; SI units.
- Processing: harmonic regression for {a_n} and δ_iso; KK-consistent spectral factorization for A_{ij} and ΔΦ; angular Keldysh response for ε_RAK(θ); Bayesian marginalization for SME combinations; uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes to share parameters across platforms.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: parameter changes < 15%, RMSE fluctuation < 10%.
- Hierarchical robustness: ψ_env↑ → δ_iso↑, ΔΦ↑, KS_p↓; γ_Path>0 at > 3σ.
- Noise stress: with 5% 1/f drift and mechanical perturbations, drifts in θ_c/‖A_{ij}‖/Δω_dir remain < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.048; blind new conditions maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/