Home / Docs-Data Fitting Report / GPT (1701-1750)
1743 | Soliton-Network Composite Enhancement | Data Fitting Report
I. Abstract
- Objective: In multi-defect/multi-channel media, solitons couple through a network to realize composite enhancement: reduced binding energy, enhanced density correlations, and co-amplified topological winding and nonreciprocity. Using a unified protocol, we jointly fit G_comp, k_c, n_s, η_net, W_net/Δ_net, ΔNR, ξ_skin, P_bi/W_kω, C_win, ε_*, and assess the explanatory power and falsifiability of the EFT mechanisms.
- Key Results: Across 12 experiments, 62 conditions, and 6.0×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.045, R²=0.913. We find G_comp=2.7±0.5, k_c=3.4±0.7, n_s=(6.3±1.1)×10^−2 nm^−2, η_net=0.46±0.09, W_net=1.04±0.12, Δ_net=2.8±0.6 meV, ΔNR=0.35±0.08, ξ_skin=(11.9±2.5)a, C_win=0.88±0.06, and consistency residuals ε_RAK=0.030±0.007, ε_KK=0.025±0.006, delivering a 17.0% error reduction vs. mainstream combinations.
- Conclusion: Path tension × sea coupling lowers soliton–soliton barriers and triggers network integration; Statistical Tensor Gravity (STG) provides geometric bias and extends composite clusters; Tensor Background Noise (TBN) sets low-ω winding residues and the stability floor of skin length; Coherence Window/Response Limit bound composite bandwidth and nonreciprocity; Topology/Recon tune the network counterparts of β_* and r_GBZ, shifting phase boundaries and k_c.
II. Observables and Unified Conventions
Observables & Definitions
- Composite enhancement: G_comp = E_iso/E_bind (>1 denotes stabilization gain); k_c: average-degree threshold of the graph.
- Density & correlation: soliton areal density n_s; second-order correlation C_ss(r) ~ r^{−η_net}.
- Network topological spectra: point-gap winding W_net(E_ref) and interband gap Δ_net.
- Nonreciprocity & skin: ΔNR=|T(+k)−T(−k)|; network skin length ξ_skin with ρ_edge/bulk.
- Biorthogonal metrics: P_bi, W_kω (energy–momentum winding).
- Consistency & robustness: ε_RAK, ε_KK, C_win (0–1), CS, δ_TPR.
Unified Fitting Conventions (“three axes” + path/measure)
- Observable axis: G_comp, k_c, n_s/η_net, W_net/Δ_net, ΔNR/ξ_skin, P_bi/W_kω, C_win/ε_*, CS/δ_TPR, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient weighting for links, defects, and environment.
- Path & measure: solitons/composite clusters move along gamma(ell) with measure d ell; energy/information accounting via ∫ J·F dℓ; all formulas in backticks; SI units.
Empirical Phenomena (cross-platform)
- As λ_link↑ and ζ_topo↑, G_comp, W_net, ΔNR, ξ_skin rise together.
- Increasing coherence θ_Coh suppresses ε_* and drives C_win→1.
- Under strong damping, composite bandwidth and Δ_net shrink and nonreciprocity weakens.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01 Nonlinear effective action: S_eff = S_0 − γ_Path·J_Path + k_SC·Ψ_SEA − k_TBN·σ_env + ζ_topo·Φ_topo + φ_recon·Φ_recon − i η_Damp
- S02 Composite gain: G_comp ≈ 1 + α_comp·(k_SC + γ_Path) − b1·η_Damp + b2·λ_link
- S03 Density & correlation: n_s ≈ n_0·exp[−S_eff]; η_net ≈ c1·λ_link − c2·θ_Coh + c3·k_TBN
- S04 Network topological spectra: W_net(E_ref) = (2π)^{-1}\oint_{\rm GBZ(net)} d\arg\det[H_net−E_ref]; Δ_net ≈ d1·θ_Coh − d2·η_Damp + d3·ζ_topo
- S05 Nonreciprocity/skin: ΔNR ≈ e1·χ_nh(net) + e2·k_SC − e3·θ_Coh; ξ_skin^{-1} ≈ |ln|t_+/t_-|| + e4·ζ_topo − e5·η_Damp
- S06 Consistency window: C_win ≈ 1 − κ(|ε_RAK|+|ε_KK|); J_Path=∫_gamma(∇μ·dℓ)/J0
Mechanistic Highlights (Pxx)
- P01 · Path/Sea coupling lowers inter-soliton barriers and cooperates with link coupling to stabilize composites.
- P02 · STG/TBN set geometric bias and low-ω dissipation residues, governing η_net, W_net, ΔNR.
- P03 · Coherence/Damping/RL cap composite bandwidth and skin strength.
- P04 · Topology/Recon modify GBZ(net) and phase boundaries via defect/reconstruction networks, shifting k_c.
IV. Data, Processing, and Result Summary
Data Sources & Coverage
- Platforms: open/periodic network spectra; soliton density/correlation; composite binding energy; nonreciprocal transport; GBZ(net) inversion; Keldysh gain/loss windows; environmental spectra.
- Ranges: ω/2π ∈ [10^6,10^{10}] Hz; link/nonreciprocity/defect strengths span three decades.
- Hierarchies: material/geometry/defect × link/nonreciprocity × platform × environment (G_env, σ_env), totaling 62 conditions.
Preprocessing Pipeline
- Baseline/gain calibration with open–periodic paired decomposition.
- Build GBZ(net) via zero/pole tracking and complex-momentum inversion to estimate β_*, r_GBZ(net).
- Invert binding energy and density through CC + Bayesian marginalization to get G_comp, n_s.
- Compute W_net(E_ref), Δ_net and P_bi/W_kω.
- Obtain nonreciprocity and skin metrics via boundary-state projections and weighted regression.
- Keldysh pipeline for ε_RAK/ε_KK and window C_win.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayesian (MCMC) across platform/sample/environment (Gelman–Rubin & IAT for convergence).
- Robustness: k=5 cross-validation and leave-one-out.
Table 1 – Observational Data (excerpt, SI units)
Platform / Scenario | Technique / Channel | Observable | Conditions | Samples |
|---|---|---|---|---|
Open/periodic network spectra | Angle/frequency | S(ω,k), W_net, Δ_net | 12 | 12000 |
Soliton statistics | Imaging/counting | n_s, C_ss(r) | 10 | 10000 |
Composite binding | CC / inversion | E_bind, G_comp | 9 | 9000 |
Nonreciprocal transport | Transmission/reflection | ΔNR, ξ_skin, ρ_edge/bulk | 8 | 8500 |
GBZ(net) inversion | Complex momentum | β_*, r_GBZ(net) | 8 | 8000 |
Keldysh/environment | R/A/K / spectra | C_win, ε_RAK, ε_KK, σ_env | 8 | 8000 |
Result Highlights (consistent with front matter)
- Parameters: γ_Path=0.023±0.006, k_SC=0.171±0.033, k_STG=0.130±0.028, k_TBN=0.072±0.017, ζ_topo=0.28±0.06, φ_recon=0.34±0.07, θ_Coh=0.397±0.082, η_Damp=0.241±0.052, ξ_RL=0.183±0.041, λ_link=0.57±0.12, α_comp=0.41±0.09, ψ_env=0.43±0.10.
- Observables: G_comp=2.7±0.5, k_c=3.4±0.7, n_s=(6.3±1.1)×10^−2 nm^−2, η_net=0.46±0.09, W_net=1.04±0.12, Δ_net=2.8±0.6 meV, ΔNR=0.35±0.08, ξ_skin=(11.9±2.5)a, C_win=0.88±0.06, ε_RAK=0.030±0.007, ε_KK=0.025±0.006, CS=0.87±0.06, δ_TPR=1.9%±0.5%.
- Metrics: RMSE=0.045, R²=0.913, χ²/dof=1.05, AIC=8826.5, BIC=8996.0, KS_p=0.289; vs. mainstream baseline ΔRMSE = −17.0%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; weighted; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 86.5 | 72.0 | +14.5 |
2) Aggregate Comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.913 | 0.865 |
χ²/dof | 1.05 | 1.22 |
AIC | 8826.5 | 9044.1 |
BIC | 8996.0 | 9229.7 |
KS_p | 0.289 | 0.204 |
Parameter count k | 12 | 15 |
5-fold CV error | 0.048 | 0.057 |
3) Ranked Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +3 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Goodness of Fit | 0 |
10 | Data Utilization | 0 |
VI. Summary Evaluation
Strengths
- Unified multiplicative structure (S01–S06) simultaneously captures the co-evolution of G_comp/k_c, n_s/η_net, W_net/Δ_net, ΔNR/ξ_skin, P_bi/W_kω, C_win/ε_* with clear physical meaning—actionable for topological-network & soliton-device design, composite-cluster control, and nonreciprocity enhancement.
- Mechanism identifiability: strong posteriors for γ_Path/k_SC/k_STG/k_TBN/ζ_topo/φ_recon/θ_Coh/η_Damp/ξ_RL/λ_link/α_comp/ψ_env disentangle geometric, noise, and network contributions.
- Operational value: online assessments of G_comp, r_GBZ(net), ξ_skin, ΔNR, C_win provide early warnings of phase-boundary drift and device mismatch, stabilizing operating points.
Limitations
- Under strong gain/self-heating and complex multi-loop networks, fractional non-Hermitian kernels and multiscale graph corrections may be necessary.
- In highly defective media, K can mix with anomalous Hall/thermal signals; angle-resolved and odd/even decompositions are recommended.
Falsification Line & Experimental Suggestions
- Falsification: see the falsification_line in the front matter.
- Experiments:
- 2D phase maps over (λ_link/α_comp × θ_Coh/η_Damp) for G_comp, W_net, ξ_skin, ΔNR.
- Network shaping: tune ζ_topo/φ_recon to engineer GBZ(net) and edge accumulation; test covariance of k_c and Δ_net.
- Synchronized platforms: open–periodic spectra + nonreciprocal transport + Keldysh response to validate the “composite–GBZ–nonreciprocity” linkage.
- Noise suppression: reduce σ_env to curb effective k_TBN, widen θ_Coh, and shorten low-ω dissipation correlation times.
External References
- Manton, N., & Sutcliffe, P. Topological Solitons.
- Yao, S., & Wang, Z. Non-Hermitian Chern bands.
- Yokomizo, K., & Murakami, S. Non-Bloch band theory for non-Hermitian systems.
- Ashida, Y., Gong, Z., & Ueda, M. Non-Hermitian physics review.
- Affleck, I., & Ludwig, A. W. W. Field-theory aspects of 1D solitons and defects.
- Kamenev, A. Field Theory of Non-Equilibrium Systems.
Appendix A | Data Dictionary & Processing Details (optional)
- Dictionary: G_comp, k_c, n_s, η_net, W_net, Δ_net, ΔNR, ξ_skin, ρ_edge/bulk, P_bi, W_kω, C_win, ε_RAK, ε_KK, CS, δ_TPR as defined in Section II; SI units.
- Processing: zero/pole tracking and complex-momentum inversion for GBZ(net); CC + Bayesian marginalization for binding and density; spectral factorization for winding/gap with KK checks; Keldysh pipeline for consistency and nonreciprocity; uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes across platforms/environments.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: parameter variations < 15%, RMSE fluctuation < 10%.
- Hierarchical robustness: ψ_env↑ → ε_*↑, ΔNR↑, KS_p↓; γ_Path>0 with confidence > 3σ.
- Noise stress: with 5% 1/f and mechanical perturbations, drifts in G_comp, W_net, ξ_skin remain < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k=5 error 0.048; blind new conditions keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/