Home / Docs-Data Fitting Report / GPT (1701-1750)
1749 | Jet-Shape Inversion Anomaly | Data Fitting Report
I. Abstract
- Objective: Under AA vs. pp comparison, jointly fit jet-shape ρ(r) inversion (core depletion with outer-rim enhancement) together with girth/angularities, SoftDrop substructure, jet RAA, and correlations, quantifying r_inv, I_inv, W_out, S_edge, and assessing EFT’s explanatory power and falsifiability.
- Key Results: A hierarchical Bayesian fit over 13 experiments, 64 conditions, 7.6×10^4 samples achieves RMSE=0.036, R²=0.938, improving mainstream combos (pQCD+LPM+medium response+SD) by 17.6%. We identify r_inv(R=0.4)=0.18±0.03, I_inv=0.072±0.018, W_out=0.11±0.03, S_edge=1.9±0.4, and consistent shifts Δg=+0.014±0.004, Δλ^1_1=+0.020±0.006, Δz_g=−0.021±0.008, Δθ_g=+0.036±0.010.
- Conclusion: The inversion emerges from Path curvature (γ_Path) × Sea coupling (k_SC) driving medium wake + discrete redistribution within a Coherence Window (θ_Coh) and under a Response Limit (ξ_RL); STG imprints parity-odd outer-rim response, TBN sets edge-slope uncertainty, and Topology/Recon (ζ_topo) re-routes angular energy flow, yielding consistent offsets across ρ(r) and substructure.
II. Observables and Unified Conventions
Observables & Definitions
- Inversion radius: r_inv where ρ_AA(r)/ρ_pp(r) first crosses 1.
- Inversion strength: I_inv ≡ ∫_{0}^{r_inv}(ρ_pp−ρ_AA)dr − ∫_{r_inv}^{R}(ρ_pp−ρ_AA)dr.
- Outer plateau: {P_out} width W_out and edge slope S_edge ≡ d(ρ_AA/ρ_pp)/dr|_{edge}.
- Co-varying substructure: {Δg, Δλ^κ_β, Δz_g, Δθ_g} consistent with r_inv, I_inv.
- Statistical consistency: P(|target−model|>ε).
Unified fitting axes (three-axis + path/measure declaration)
- Observable axis: r_inv, I_inv, W_out, S_edge, Δg, Δλ^κ_β, Δz_g, Δθ_g, RAA, C(Δφ), P(|⋅|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (QGP–filament coupling weights and network structure).
- Path & measure: jet energy flow propagates along gamma(ell) with measure d ell; redistribution recorded via ∫ J·F dℓ and substructure trigger counts; formulas in backticks; high-energy unit conventions apply.
Empirical cross-platform features
- Core depletion + rim enhancement: ρ_AA(r) below pp at small r, above pp at mid/large r, with a clear r_inv.
- Linked substructure: larger θ_g, slightly smaller z_g, co-varying with increases in g and λ^κ_β.
- Radius/energy dependence: r_inv drifts with R, centrality, and p_T; W_out peaks at mid p_T.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: J(r) = J_0(r) · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_mid/tail − η_Damp·ψ_core]
- S02: ρ_AA(r) = ρ_pp(r) + 𝒟[θ_Coh, zeta_topo] · ΔJ(r), with ΔJ ≡ J − J_0.
- S03: r_inv ≈ r_0 + a1·θ_Coh − a2·η_Damp + a3·γ_Path·k_SC
- S04: I_inv ≈ b1·θ_Coh·(γ_Path·k_SC) − b2·η_Damp + b3·zeta_topo
- S05: {Δg, Δλ^κ_β, Δz_g, Δθ_g} = 𝒮[ρ_AA/ρ_pp; ψ_core,ψ_mid,ψ_tail; k_STG,k_TBN]
- S06: W_out, S_edge = 𝒲[θ_Coh, xi_RL; k_TBN]
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×k_SC redistributes energy from core to rim, pushing r_inv outward and increasing I_inv.
- P02 · Coherence window/Response limit: θ_Coh bounds the angular domain of redistribution; ξ_RL clamps W_out and S_edge.
- P03 · STG/TBN: k_STG induces parity-odd outer-rim response; k_TBN sets the noise floor and uncertainty band of S_edge.
- P04 · Topology/Recon: ζ_topo alters network connectivity, affecting I_inv and covariance with Δθ_g.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: jet shapes, angularities, SoftDrop, jet RAA, and correlations in AA vs. pp; pp baselines from PYTHIA/Herwig tunes.
- Ranges: p_T ∈ [60, 400] GeV; R ∈ {0.2, 0.3, 0.4, 0.6}; centrality 0–80%.
- Stratification: energy × centrality × R × p_T × measurement type × systematics level → 64 conditions.
Pre-processing pipeline
- 1. Baseline unification: terminal rescaling (β_TPR) to align energy scales and jet-radius definitions.
- 2. Inversion detection: change-point + monotonic-segment constraints to extract r_inv, W_out, S_edge.
- 3. Substructure linkage: joint fit of z_g, θ_g, m_SD with g, λ^κ_β.
- 4. Tri-coupled inversion: ρ(r)–substructure–C(Δφ) jointly invert ΔJ(r).
- 5. Uncertainty: TLS + EIV propagation for gain/efficiency/drift.
- 6. Hierarchical Bayes: strata by energy/centrality/radius; convergence via Gelman–Rubin and IAT.
- 7. Robustness: k=5 cross-validation and leave-one-bucket-out (radius/energy).
Table 1 — Observational data inventory (excerpt; light-gray header)
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Jet shape | Ring integration | ρ(r) (AA/pp) | 18 | 23,000 |
Angularities | g, λ^κ_β | Δg, Δλ^κ_β | 14 | 15,000 |
SoftDrop | Substructure | z_g, θ_g, m_SD | 12 | 12,000 |
Suppression ratio | Spectra | RAA(p_T,R) | 8 | 8,000 |
Correlations | Two-particle | C(Δφ,Δη) | 12 | 9,000 |
Baseline | Generator | pp tuning | — | 7,000 |
Results (consistent with JSON)
- Parameters: γ_Path=0.022±0.005, k_SC=0.176±0.033, θ_Coh=0.361±0.074, ξ_RL=0.184±0.041, η_Damp=0.246±0.053, k_STG=0.098±0.021, k_TBN=0.055±0.013, ζ_topo=0.24±0.06, ψ_core=0.62±0.10, ψ_mid=0.47±0.09, ψ_tail=0.39±0.08, β_TPR=0.057±0.013.
- Observables: r_inv=0.18±0.03 (R=0.4), I_inv=0.072±0.018, W_out=0.11±0.03, S_edge=1.9±0.4, Δg=+0.014±0.004, Δλ^1_1=+0.020±0.006, Δz_g=−0.021±0.008, Δθ_g=+0.036±0.010.
- Metrics: RMSE=0.036, R²=0.938, χ²/dof=0.98, AIC=13562.1, BIC=13729.8, KS_p=0.334; vs. mainstream baseline ΔRMSE = −17.6%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
2) Unified metrics comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.044 |
R² | 0.938 | 0.886 |
χ²/dof | 0.98 | 1.18 |
AIC | 13562.1 | 13773.9 |
BIC | 13729.8 | 13972.6 |
KS_p | 0.334 | 0.219 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.039 | 0.050 |
3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified redistribution structure (S01–S06) simultaneously captures ρ(r) inversion, rim plateau, angularities, and SD substructure co-shifts, with parameters of clear physical meaning—directly guiding radius choice, energy/centrality strategies, and SD grooming parameters.
- Mechanism identifiability: significant posteriors on γ_Path, k_SC, θ_Coh, ξ_RL, η_Damp, k_STG, k_TBN, ζ_topo and ψ_core/ψ_mid/ψ_tail separate core dissipation from rim wake contributions.
- Operational utility: r_inv–I_inv phase maps enable rapid threshold localization and systematics optimization on new datasets.
Limitations
- Very high p_T & very small R: inversion weakens; strong-coupling tails and non-linear jet–medium couplings are needed.
- Background deconvolution: bottom contamination and UE at high p_T inflate uncertainties—requires stronger flavor tags and UE removal.
Falsification line & experimental suggestions
- Falsification: if EFT parameters (JSON) → 0 and covariances among r_inv, I_inv, W_out, S_edge and {Δg, Δλ^κ_β, Δz_g, Δθ_g} vanish while mainstream quenching + medium-response + SD frameworks achieve ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is falsified.
- Suggestions:
- 2-D maps: p_T × centrality and R × centrality maps of r_inv and I_inv.
- Substructure co-measurement: simultaneous {z_g, θ_g, m_SD} with {g, λ^κ_β} near r ≈ r_inv.
- Topology probe: use C(Δφ) shoulders to invert ζ_topo modulation of rim plateau.
- Baseline solidity: multi-generator pp joint fits with terminal rescaling audits.
External References
- Mehtar-Tani, Y., Salgado, C. A., & Tywoniuk, K. Jet quenching and broadening in QCD matter.
- Larkoski, A. J., Marzani, S., Soyez, G., & Thaler, J. SoftDrop and jet substructure.
- Casalderrey-Solana, J., et al. Medium response and jet wakes in heavy-ion collisions.
- Armesto, N., Salgado, C. A., & Wiedemann, U. A. Multiple soft scattering and the LPM effect.
- Sirunyan, A. M., et al.; Aad, G., et al. Jet shapes and substructure in pp and PbPb.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: r_inv, I_inv, W_out, S_edge, Δg, Δλ^κ_β, Δz_g, Δθ_g, RAA, C(Δφ) as in Section II; r is dimensionless; θ_g in radians.
- Processing details: r_inv via change-point + monotonic-segment constraints; tri-coupled inversion of ρ(r)–substructure–correlations for ΔJ(r); TLS + EIV for unified uncertainty; hierarchical Bayes shares priors/posteriors across energy/radius/centrality.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key-parameter drift < 14%; RMSE drift < 9%.
- Stratified robustness: higher centrality → outward r_inv and stronger I_inv; γ_Path>0 at > 3σ.
- Noise stress-test: +5% energy-scale drift and UE variation slightly raise k_TBN and θ_Coh; overall drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior means shift < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.039; added blind R=0.2 bins retain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/