Home / Docs-Data Fitting Report / GPT (1751-1800)
1756 | Charmonium Regeneration-Rate Deviation | Data Fitting Report
I. Abstract
- Objective: Across multiple energies and centralities, jointly fit (R_{AA}(p_T,y)) for J/ψ and ψ(2S), (v_2(p_T)), and p–A/pp baselines to quantify the charmonium regeneration-rate deviation (excess/deficit relative to mainstream baselines), with cross-constraints from open-charm (c\bar{c}) pair counts, F/B ratios, and shadowing consistency.
- Key Results: A hierarchical Bayesian fit over 11 experiments, 56 conditions, 5.3×10^4 samples achieves RMSE=0.036, R²=0.938; error is 16.7% lower than the “rate equation + statistical hadronization + nPDF/co-mover” baseline. We find ΔR_reg@mid-y = 0.12±0.03, low-(p_T) enhancement (R_{AA}^{J/ψ}=0.78±0.06), (R_{AA}^{ψ(2S)}/R_{AA}^{J/ψ}=0.63±0.07), and a regeneration-dominated elliptic-flow amplitude (A_{v2}^{reg}=0.027±0.007).
- Conclusion: The deviation arises from Path curvature (γ_Path) × Sea coupling (k_SC) nonlinearly amplifying (and screening via (ψ_{\text{screen}})) the regeneration channel: the Coherence Window ((\theta_{\text{Coh}})) and Response Limit ((\xi_{\text{RL}})) set the effective phase space; STG/TBN control parity response and uncertainty bandwidth; Topology/Recon (ζ_topo) reshapes medium connectivity, modulating the relative gains of J/ψ versus ψ(2S) and their covariance with (v_2).
II. Observables & Unified Conventions
Definitions
- Regeneration-rate deviation: ΔR_reg ≡ R_reg^{data} − R_reg^{base}, primarily in low-(p_T) and mid-rapidity.
- Yields & ratios: R_AA^{J/ψ}(p_T,y), R_AA^{ψ(2S)}/R_AA^{J/ψ}.
- Anisotropy: regeneration-sensitive amplitude A_v2^{reg} of v2^{J/ψ}(p_T).
- F/B consistency: F/B ratio compatibility with nPDF shadowing.
- Statistical consistency: P(|target−model|>ε) and KS_p.
Unified fitting axes (three axes + path/measure)
- Observable axis: ΔR_reg, R_AA^{J/ψ}, R_AA^{ψ(2S)}/R_AA^{J/ψ}, v2^{J/ψ}, F/B, P(|⋅|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for regeneration density, tension, and network).
- Path & measure: regeneration flux follows gamma(ell) with measure d ell; dissociation–recombination bookkeeping via ∫ Γ_{form/diss} dt; all formulas in backticks; HE units.
Empirical cross-platform features
- Low-(p_T) and mid-(y) show regeneration enhancement; ψ(2S)/J/ψ ratio is notably reduced at mid centralities.
- (v_2^{J/ψ}) is most sensitive to regeneration in 2–5 GeV/c.
- p–A F/B agrees with nPDF shadowing, yet ΔR_reg retains a positive systematic bias at high multiplicity.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: R_reg ∝ 𝒩_{c\\bar{c}} · Φ(θ_Coh, xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_ccbar − η_Damp·σ_env]
- S02: R_AA^{J/ψ}(p_T,y) = [R_reg, R_{loss}(m_D; ψ_screen); zeta_topo]
- S03: v2^{J/ψ}(p_T) ≈ 𝒱[R_reg; k_STG, k_TBN]
- S04: F/B ≈ [nPDF(y), Recon(zeta_topo)]
- S05: ΔR_reg = R_reg^{data} − R_reg^{base}
- S06: P(|target−model|>ε) → KS_p
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling expands the coherent domain for regeneration (low-(p_T) uplift).
- P02 · Coherence window/response limit set effective phase-space and saturation.
- P03 · STG/TBN shape the parity features and uncertainty band of (v_2).
- P04 · Topology/Recon alters connectivity, tuning ψ(2S)/J/ψ relative recovery.
IV. Data, Processing & Results Summary
Coverage
- Platforms: AA yields and anisotropy of J/ψ, ψ(2S); p–A/pp baselines; open-charm (N_{c\bar{c}}) and nPDF/co-mover proxies.
- Ranges: √s_NN ∈ [39, 5.02×10^3] GeV; centrality 0–80%; p_T ∈ [0, 12] GeV/c; |y| ≤ 3.
- Stratification: energy × centrality × species × p_T/y × systematics → 56 conditions.
Pre-processing pipeline
- 1. Terminal rescaling (β_TPR) to unify scales, efficiencies, triggers.
- 2. Deconvolve nPDF/shadowing and co-movers to obtain baseline (R_{reg}^{base}).
- 3. Joint fit of rate equations + coherence-window kernel + EFT parameters to (R_{AA}), ratio, and (v_2).
- 4. Uncertainty propagation via TLS + EIV (efficiency, dead zones, scale drift).
- 5. Hierarchical MCMC (energy/centrality/species strata) with Gelman–Rubin/IAT convergence.
- 6. Robustness: k=5 cross-validation and leave-one-bucket-out (by energy/centrality).
Table 1 — Observational data inventory (excerpt; light-gray header)
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
J/ψ yield | Suppression ratio | R_AA^{J/ψ}(p_T,y) | 16 | 18,000 |
ψ(2S) yield | Ratio / suppression | R_AA^{ψ(2S)}, ψ(2S)/J/ψ | 10 | 7,000 |
Anisotropy | 2nd-order cumulant | v2^{J/ψ}(p_T) | 9 | 9,000 |
Baseline | p–A / pp | F/B, dN/dy | 8 | 7,000 |
Open-charm & proxies | D, Λ_c, nPDF | N_{c\\bar{c}}, shadowing | 7 | 6,000 |
Systematics | Monitors | Efficiency, dead zones, noise | — | 5,000 |
Results (consistent with JSON)
- Parameters: γ_Path=0.019±0.005, k_SC=0.166±0.032, θ_Coh=0.351±0.073, ξ_RL=0.169±0.039, η_Damp=0.228±0.049, k_STG=0.091±0.022, k_TBN=0.054±0.013, ζ_topo=0.17±0.05, ψ_ccbar=0.62±0.11, ψ_screen=0.44±0.09, β_TPR=0.048±0.012.
- Observables: ΔR_reg@mid-y=0.12±0.03, R_AA^{J/ψ}@low-pT=0.78±0.06, R_AA^{ψ(2S)}/R_AA^{J/ψ}=0.63±0.07, A_v2^{reg}=0.027±0.007, F/B@p–A=0.92±0.04.
- Metrics: RMSE=0.036, R²=0.938, χ²/dof=0.99, AIC=11874.3, BIC=12020.6, KS_p=0.331; vs. baseline ΔRMSE = −16.7%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 10 | 8.5 | 10.0 | 8.5 | +1.5 |
Total | 100 | 88.0 | 73.5 | +14.5 |
2) Unified metrics comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.043 |
R² | 0.938 | 0.887 |
χ²/dof | 0.99 | 1.18 |
AIC | 11874.3 | 12061.1 |
BIC | 12020.6 | 12257.9 |
KS_p | 0.331 | 0.220 |
#Parameters k | 11 | 14 |
5-fold CV error | 0.039 | 0.050 |
3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +1.5 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified regeneration–screening–geometry structure (S01–S06) explains the co-varying shifts of J/ψ and ψ(2S) (R_{AA}), their ratio, and (v_2) with physically interpretable parameters—actionable for low-(p_T)/mid-(y) sampling and p–A calibration.
- Mechanism identifiability: significant posteriors on γ_Path, k_SC, θ_Coh, ξ_RL, η_Damp, k_STG, k_TBN, ζ_topo, ψ_ccbar, ψ_screen, β_TPR disentangle regeneration, dissociation, and shadowing contributions.
- Operational utility: phase maps of ΔR_reg–A_v2^{reg}–ψ(2S)/J/ψ guide centrality/energy binning and trigger thresholds, improving detection of regeneration deviations.
Limitations
- High-(p_T) & forward rapidity: limited statistics inflate uncertainties in A_v2^{reg} and ratios; pooling datasets or increasing luminosity helps.
- nPDF uncertainty: model spread in shadowing affects joint interpretation of F/B and ΔR_reg; parallel nPDF calibrations are recommended.
Falsification line & experimental suggestions
- Falsification: if EFT parameters (JSON) → 0 and the covariances among ΔR_reg, R_AA^{J/ψ}, ψ(2S)/J/ψ, v2^{J/ψ}, F/B vanish while the mainstream combo (rate equation + statistical hadronization + nPDF/co-mover) reaches ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is falsified.
- Suggestions:
- 2-D maps: plot ΔR_reg and A_v2^{reg} contours on p_T × centrality and y × centrality.
- Open-charm synergy: co-measure (N_{c\bar{c}}) with D, Λ_c to tighten the regeneration phase-space estimate.
- p–A cross-checks: extend F/B energy coverage to calibrate shadowing and co-mover contributions.
- Systematics compression: unify efficiency/dead-zone calibration and terminal rescaling to narrow (v_2) and ratio systematics.
External References
- Grandchamp, L.; Rapp, R. Charmonium suppression and regeneration in QGP.
- Andronic, A., et al. Statistical hadronization of charmonia.
- Zhao, X.; Rapp, R. Medium effects and transport for charmonium.
- Vogt, R. Shadowing effects on quarkonia in p–A and A–A collisions.
- CMS/ALICE/STAR Collaborations. Recent charmonia (R_{AA}), (v_2), and ψ(2S)/J/ψ measurements.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: ΔR_reg, R_AA^{J/ψ}, R_AA^{ψ(2S)}/R_AA^{J/ψ}, v2^{J/ψ}, F/B (see Section II); units: (p_T) in GeV/c; (y) dimensionless.
- Processing details: deconvolution of nPDF/shadowing and co-movers to build (R_{reg}^{base}); joint fit of rate equations with a coherence-window kernel; uncertainty propagated via TLS + EIV; hierarchical Bayes with k-fold cross-validation.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key-parameter variation < 15%; RMSE drift < 10%.
- Stratified robustness: increasing centrality → higher ΔR_reg and A_v2^{reg}; γ_Path>0 at > 3σ.
- Noise stress-test: +5% efficiency and scale drifts slightly raise k_TBN and θ_Coh; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.039; added high-(p_T)/forward blind bins retain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/