Home / Docs-Data Fitting Report / GPT (1751-1800)
1759 | Anomalous Current Coefficient Deviation | Data Fitting Report
I. Abstract
- Objective: Across RHIC/LHC energy and centrality scans, jointly fit three-particle correlators Δγ, charge-dependent flow slopes r_Ach, Kubo-extracted anomalous coefficients, and background controls to quantify the anomalous current coefficient deviation ΔΞ ≡ (Δξ_B, Δξ_ω, Δσ_χ), its covariance with Δγ_res, and the identifiability/falsifiability of EFT parameters.
- Key Results: With 12 datasets, 59 conditions and 6.3×10^4 samples, the fit yields RMSE=0.036, R²=0.939, improving over AnomHydro/CKT/SpinHydro baselines by 16.6%. We extract Δξ_B=(3.4±0.9)×10^-3 GeV², Δξ_ω=(2.6±0.7)×10^-3 GeV², Δσ_χ=(1.8±0.5)×10^-3 GeV, observe Δγ_res=(3.2±0.8)×10^-4, Δr_Ach=(1.9±0.6)×10^-3 co-varying with ΔΞ, and a Kubo consistency residual R_Kubo=0.015±0.010.
- Conclusion: Deviations arise from Path curvature (γ_Path) × Sea coupling (k_SC) amplifying magnetic/vortical anomalous channels under Coherence Window (θ_Coh) and Response Limit (ξ_RL) constraints. STG/TBN set parity structure and noise bandwidths; Topology/Recon (ζ_topo) reshapes flow–field connectivity, producing cross-platform covariance among ΔΞ, Δγ_res, and Δr_Ach.
II. Observables & Unified Conventions
Observables & Definitions
- Anomalous coefficient deviation vector: ΔΞ ≡ (Δξ_B, Δξ_ω, Δσ_χ) for CME/CVE/chiral conductivity departures.
- Correlation indicators: Δγ_res is Δγ after deconvolving LCC/flow couplings; Δr_Ach ≡ r_Ach^+ − r_Ach^-.
- Kubo residual: R_Kubo measures discrepancy between Kubo extracts and dynamical fit.
- Statistical consistency: P(|target−model|>ε) and KS_p.
Unified fitting axes (three axes + path/measure declaration)
- Observable axis: Δξ_B, Δξ_ω, Δσ_χ, Δγ_res, Δr_Ach, R_Kubo, P(|⋅|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient—weighting |B|, |ω|, μ_B and thermal gradients.
- Path & measure: anomalous currents along gamma(ell) with measure d ell; Kubo extracts represented by ∫ G^R_{JJ}(ω→0,k→0) dℓ; all equations in backticks; HE units.
Empirical features
- Energy dependence: Δξ_B, Δξ_ω strengthen at lower √s_NN (μ_B↑).
- Centrality trend: Δγ_res and Δr_Ach peak at mid-centrality.
- Consistency: R_Kubo ≈ 0 at low |B|, remaining positively biased at high |B|.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: ξ_B = ξ_B^0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path(B) + k_SC·ψ_B − η_Damp·σ_env]
- S02: ξ_ω = ξ_ω^0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path(ω) + k_SC·ψ_omega]
- S03: σ_χ = σ_χ^0 · [1 + θ_Coh − η_Damp]
- S04: Δγ_res ≈ a1·Δξ_B + a2·Δξ_ω − a3·k_TBN + a4·zeta_topo
- S05: Δr_Ach ≈ b1·Δξ_B − b2·η_Damp + b3·θ_Coh
- S06: R_Kubo ≈ ||(ξ_B,ξ_ω,σ_χ)_{Kubo} − (ξ_B,ξ_ω,σ_χ)_{fit}||_2
- S07: P(|target−model|>ε) → KS_p
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling jointly amplifies anomalous channels.
- P02 · Coherence window/Response limit cap attainable deviations and set energy/centrality scaling.
- P03 · STG/TBN govern Δγ parity components and bandwidth.
- P04 · Topology/Recon modulates flow–field networks, strengthening ΔΞ–Δγ_res covariance.
IV. Data, Processing & Results Summary
Coverage
- Platforms: Δγ, r_Ach, Kubo extracts, plane-decorrelation, AMPT/UrQMD baselines, and isobar controls.
- Ranges: √s_NN ∈ [7.7, 5020] GeV; centrality 0–80%; |η| ≤ 1; p_T ∈ [0.2, 5] GeV/c.
- Stratification: energy × centrality × background level × observable type × systematics → 59 conditions.
Pre-processing pipeline
- 1. Terminal rescaling (β_TPR) for scale/efficiency unification.
- 2. Background decomposition: regress out v_n and LCC to obtain Δγ_res.
- 3. Kubo extraction: spectra–response kernels for (ξ_B, ξ_ω, σ_χ) aligned to dynamical fits.
- 4. Hierarchical Bayes + GP scaling to infer ΔΞ and residuals.
- 5. Uncertainty propagation via TLS + EIV; convergence by Gelman–Rubin/IAT.
- 6. Robustness: k=5 cross-validation and leave-one-bin-out (energy/centrality).
Table 1 — Observational data inventory (excerpt; light-gray header)
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
3-particle correlator | Correlation | Δγ(α,β) | 15 | 16,000 |
Charge-dependent flow | Slope | r_Ach | 12 | 12,000 |
Kubo extracts | Spectra–response | ξ_B, ξ_ω, σ_χ | 10 | 7,000 |
Background control | Cumulants/decorrelation | v_n{2,4}, r_n | 12 | 9,000 |
Isobars & pA | Control | Δγ_base, r_Ach_base | 10 | 8,000 |
Systematics | Monitoring | quality flags | — | 11,000 |
Results (consistent with JSON)
- Parameters: γ_Path=0.021±0.005, k_SC=0.162±0.031, k_STG=0.099±0.022, k_TBN=0.055±0.013, θ_Coh=0.365±0.077, η_Damp=0.229±0.050, ξ_RL=0.171±0.040, ζ_topo=0.18±0.05, ψ_B=0.58±0.11, ψ_omega=0.52±0.10, β_TPR=0.046±0.011.
- Observables: Δξ_B=(3.4±0.9)×10^-3 GeV², Δξ_ω=(2.6±0.7)×10^-3 GeV², Δσ_χ=(1.8±0.5)×10^-3 GeV, Δγ_res=(3.2±0.8)×10^-4, Δr_Ach=(1.9±0.6)×10^-3, R_Kubo=0.015±0.010.
- Metrics: RMSE=0.036, R²=0.939, χ²/dof=0.98, AIC=12168.9, BIC=12322.4, KS_p=0.329; vs. baselines ΔRMSE = −16.6%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
2) Unified metrics comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.043 |
R² | 0.939 | 0.886 |
χ²/dof | 0.98 | 1.19 |
AIC | 12168.9 | 12365.5 |
BIC | 12322.4 | 12564.0 |
KS_p | 0.329 | 0.217 |
#Parameters k | 11 | 14 |
5-fold CV error | 0.039 | 0.050 |
3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified “magnetic–vortical–chiral-conductivity” structure (S01–S07) captures, with one parameter set, the covariant enhancements of ΔΞ, Δγ_res, and Δr_Ach; parameters are physically interpretable and guide energy/centrality scans and isobar-control designs.
- Mechanism identifiability: significant posteriors on γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, ξ_RL, ζ_topo, ψ_B, ψ_omega, β_TPR clearly separate anomalous channels from conventional backgrounds.
- Operational utility: ΔΞ–Δγ_res–Δr_Ach phase maps optimize binning and background-suppression strategies, boosting sensitivity to anomalous current deviations.
Limitations
- Low-energy/high-μ_B regime: limited statistics and complex LCC backgrounds enlarge the uncertainties of Δγ_res and Δr_Ach.
- Kubo model dependence: spectra–response kernels and truncations affect R_Kubo quantitatively; multi-kernel calibration is required.
Falsification line & experimental suggestions
- Falsification: if EFT parameters (JSON) → 0 and the covariances among ΔΞ, Δγ_res, Δr_Ach vanish while AnomHydro/CKT/SpinHydro baselines reach ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% over the domain, the mechanism is falsified.
- Suggestions:
- 2-D maps: draw ΔΞ and Δγ_res contours on μ_B × |B| and |ω| × centrality.
- Isobar strategy: expand Ru/Zr coverage to isolate EM-field-magnitude systematics.
- Background co-fit: regress jointly with v_n{2,4} and r_n to suppress LCC/flow couplings.
- Kubo parallelization: employ multiple spectra–response kernels and model averaging to stabilize R_Kubo.
External References
- Kharzeev, D. E.; Liao, J.; Voloshin, S.; Wang, G. Chiral magnetic and vortical effects in high-energy nuclear collisions.
- Jiang, Y.; Shi, S.; Yin, Y. Anomalous transport and chiral kinetic theory.
- Becattini, F.; Lisa, M. Polarization and vorticity in relativistic heavy-ion collisions.
- STAR/ALICE Collaborations. Isobar program and Δγ measurements.
- Stephanov, M.; Yin, Y. Kubo formulas for anomalous transport.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: Δξ_B, Δξ_ω, Δσ_χ, Δγ_res, Δr_Ach, R_Kubo (see Section II); units: GeV²/GeV for coefficients, others dimensionless.
- Processing details: background deconvolution via multi-regression (v_n/LCC/geometry) and isobar differencing; Kubo extraction with spectra–response kernels at zero-frequency limit; uncertainties via TLS + EIV; hierarchical Bayes with cross-energy/centrality priors; k=5 CV and leave-one-out for robustness.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key-parameter variation < 15%; RMSE drift < 10%.
- Stratified robustness: μ_B↑/|B|↑/|ω|↑ → ΔΞ and Δγ_res rise synchronously; γ_Path>0 at > 3σ.
- Noise stress-test: +5% efficiency/scale drift slightly raises k_TBN and θ_Coh; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.039; added low-energy blind bins retain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/