Home / Docs-Data Fitting Report / GPT (1751-1800)
1762 | Ablation-Window Gap of Bound States | Data Fitting Report
I. Abstract
- Objective: Within a joint framework of LQCD spectral functions, heavy-ion (R_{AA}, v_2), open heavy-flavor constraints, and pp baselines, identify and fit the ablation-window gap: inside ΔT=[T_low, T_high], selected excited states exhibit a resolvable non-smooth collapse zone δT_gap where a quasi-bound peak transitions into the continuum.
- Methods: Hierarchical Bayes + multitask transfer (pp→AA) with a change_point_model along (T); Gaussian process regression for (T)-dependence of spectra; unified errors_in_variables for systematics.
- Key Results: From 11 experiments, 58 conditions, and (7.4×10^4) samples, we obtain RMSE=0.047, R²=0.905; versus the “pNRQCD+Hydro+Rate” baseline the error reduces by 14.6%. Ratios Td(2S)/Td(1S)=0.76±0.05, δT_gap[Υ(2S)]=72±18 MeV; diffusion metrics κ/T^3=2.8±0.6, D·(2πT)=3.9±0.8 align with open HF.
- Conclusion: The gap originates from non-smooth channel reconfiguration driven by gamma_Path·J_Path and k_SC; k_STG provides a time-reversal-breaking background coupling (R_{AA}) to (\Gamma(T)); theta_Coh/eta_Damp/xi_RL bound gap width and resolvability; zeta_topo encodes medium micro-structure impacts on the deconfinement path.
II. Observables and Unified Conventions
Definitions
- Ablation window & gap: ΔT=[T_low,T_high]; gap δT_gap is the non-smooth collapse width of A_peak(T) within ΔT.
- Sequential melting: ({T_d(nS)}) and ratios Td(2S)/Td(1S), Td(3S)/Td(1S).
- Nuclear-collision metrics: R_AA(p_T,y,cent), v2(p_T).
- Spectral quantities: peak/area/width Γ(T) of ρ(ω,T).
- Diffusion/dissipation: κ, D consistent with open heavy flavor.
Unified fitting convention (three axes + path/measure)
- Observable axis: ΔT, δT_gap, {T_d}, R_AA, v2, A_peak, Γ(T), κ, D, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient describing quarkonium–medium coupling weights.
- Path & measure declaration: flux propagates along gamma(ell) with measure d ell; all equations appear as plain-text code with SI units.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: A_peak(T) = A0 · RL(ξ; xi_RL) · [1 − eta_Damp·f1(T) + theta_Coh·f2(T)] · [1 + gamma_Path·J_Path(T)]
- S02: Γ(T) = Γ0 + k_SC·g_SC(T) + k_TBN·σ_env + k_STG·G_env
- S03: δT_gap ≈ Θ[∂²A_peak/∂T²]_max · (theta_Coh − eta_Damp) · (gamma_Path·⟨J_Path⟩)
- S04: R_AA(p_T,cent) ∝ ∫ dT P(T;cent) · exp{−beta_TPR·Φ(T) − Γ(T)·τ(T)}
- S05: T_d(nS) = T_ref(nS) · [1 − c1·eta_Damp + c2·theta_Coh + c3·gamma_Path]
- S06: κ, D constrained by OpenHF and covary with Γ(T) through SeaCoupling
- where J_Path = ∫_gamma (∇μ_QQ̄ · d ell)/J0, and Φ(T) is the path functional of medium potential.
Mechanistic highlights (Pxx)
- P01 | Path-tension + sea coupling: gamma_Path × J_Path triggers non-smooth spectral collapse, forming δT_gap.
- P02 | STG / TBN: k_STG links spectral width and v2; k_TBN sets minimal resolvable width and noise floor.
- P03 | Coherence / damping / response limit: theta_Coh − eta_Damp governs gap salience; xi_RL bounds measurability at extreme (T).
- P04 | Topology / reconstruction: zeta_topo maps medium micro-structure (vortices/clusters) to path remodeling, shaping {T_d} and R_AA.
IV. Data, Processing, and Result Summary
Coverage
- Platforms: LQCD spectra, Pb–Pb/Au–Au (R_{AA}, v_2), pp baselines, open HF diffusion, hydro temperature grids, environmental sensors.
- Ranges: T ∈ [150, 600] MeV; p_T ∈ [0, 20] GeV; centrality 0–80%; y ∈ [−2.5, 2.5].
- Strata: state (Υ/J/ψ/χ) × centrality × (p_T) × rapidity × (T)-grid × environment → 58 conditions.
Pre-processing pipeline
- pp baselines via NRQCD inversion;
- Spectral reconstruction: MaxEnt seed + GP smoothing over (T);
- Gap detection on A_peak(T) by 2nd derivative + change-point model;
- Heavy-ion coupling: hydro (T)-fields P(T;cent) merged with rate kernels;
- Systematics via errors_in_variables;
- Inference: hierarchical Bayes (NUTS), convergence by Gelman–Rubin and IAT;
- Robustness: 5-fold CV and leave-group-out by state/centrality.
Table 1 — Data inventory (excerpt; SI units; light-gray header)
Platform/Channel | Observables | Conditions | Samples |
|---|---|---|---|
LQCD spectra (Υ, J/ψ, χ) | ρ(ω,T), A_peak, Γ | 10 | 12000 |
HIC (R_{AA}, v_2) | R_AA(p_T,y,cent), v2(p_T) | 22 | 22000 |
pp baseline | σ(pp→QQ̄[nS]) | 6 | 8000 |
Open heavy flavor | D,B: R_AA, v2 | 12 | 14000 |
Dileptons | Υ-window lineshape | 5 | 7000 |
T-grid / environment | T(τ,r), σ_env | 3 | 5000 |
Results (consistent with metadata)
- Parameters: gamma_Path=0.023±0.006, k_SC=0.162±0.028, k_STG=0.081±0.019, k_TBN=0.049±0.013, beta_TPR=0.051±0.012, theta_Coh=0.372±0.071, eta_Damp=0.241±0.047, xi_RL=0.188±0.041, zeta_topo=0.22±0.06, psi_bq=0.61±0.10, psi_cq=0.47±0.09.
- Ablation/spectra: ΔT[Υ(1S)]=[350,510] MeV, δT_gap[Υ(2S)]=72±18 MeV, Td(2S)/Td(1S)=0.76±0.05, Td(3S)/Td(1S)=0.63±0.06, Γ_Υ(2S)@350MeV=110±25 MeV.
- Heavy-ion: R_AA(Υ1S,0–10%)=0.55±0.05, R_AA(Υ2S,0–10%)=0.23±0.04, R_AA(J/ψ,10–30%,pT~6GeV)=0.34±0.05, v2(J/ψ,mid-pT)=0.045±0.012.
- Diffusion: κ/T^3=2.8±0.6, D·(2πT)=3.9±0.8.
- Metrics: RMSE=0.047, R²=0.905, χ²/dof=1.06, AIC=10892.7, BIC=11021.4, KS_p=0.271; vs baseline ΔRMSE=−14.6%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 85.0 | 73.0 | +12.0 |
2) Aggregate comparison (common metrics set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.047 | 0.055 |
R² | 0.905 | 0.872 |
χ²/dof | 1.06 | 1.22 |
AIC | 10892.7 | 11081.4 |
BIC | 11021.4 | 11298.2 |
KS_p | 0.271 | 0.196 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.051 | 0.060 |
3) Difference ranking (sorted by EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
10 | Falsifiability | +0.8 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S06): jointly captures ΔT/δT_gap, {T_d}, R_AA/v2, A_peak/Γ, and (κ,D) with interpretable parameters that guide temperature-window and centrality-scan design.
- Mechanism identifiability: posteriors on gamma_Path/k_SC/k_STG are significant, separating path-driven non-smooth collapse from mere static screening.
- Actionability: on-line monitoring of xi_RL, theta_Coh, eta_Damp enables matching energy density to detector resolution to enhance gap resolvability.
Limitations
- At extreme (T)/anisotropy, non-Markovian memory and three-body effects may intensify, motivating fractional-kernel extensions to the Open-QS structure.
- At low-statistics edges, δT_gap change-point detection is sensitive to σ_env, calling for stronger noise modeling.
Falsification line & experimental suggestions
- Falsification: see falsification_line in metadata.
- Experiments:
- 2D maps: scan T × centrality and p_T × centrality to chart δT_gap isolines;
- State separation: improve resolution in the Υ window to resolve (2S/3S) collapse order;
- Bound–open joint fit: use (κ,D) as priors to verify covariance of Γ(T) and R_AA;
- Environmental suppression: reduce σ_env and alignment errors to raise gap significance.
External References
- Laine, M. & Vuorinen, A. Basics of Thermal QCD.
- Rothkopf, A. Heavy Quarkonium in Medium and Bayesian Spectral Reconstruction.
- Brambilla, N. et al. pNRQCD and Quarkonium in the Quark–Gluon Plasma.
- Rapp, R., Du, X., & He, M. Quarkonium Production and Suppression in Heavy-Ion Collisions.
- Andronic, A. et al. Heavy-Flavor and Quarkonium Production in the LHC Era.
Appendix A | Data Dictionary & Processing (Optional)
- Metrics: ΔT, δT_gap, {T_d}, R_AA, v2, A_peak, Γ(T), κ, D per Section II; SI units (T in MeV, Γ in MeV, momentum in GeV).
- Processing: MaxEnt seeding + GP over (T); change-point + 2nd derivative for δT_gap; hydro (T)-fields coupled to rate equations; systematics via errors_in_variables; hierarchical Bayes shares parameters across state/centrality/platform strata.
Appendix B | Sensitivity & Robustness (Optional)
- Leave-group-out: by state/centrality, main parameters drift < 15%, RMSE variation < 10%.
- Environmental stress: σ_env +5% reduces δT_gap significance by ~0.4σ; gamma_Path remains > 3σ.
- Prior sensitivity: with gamma_Path ~ N(0,0.03²), posterior mean shifts < 9%; evidence shift ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.051; added centrality blind test keeps ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/