Home / Docs-Data Fitting Report / GPT (1751-1800)
1800 | Charge-Density-Wave Sliding Deviation | Data Fitting Report
I. Abstract
- Objective. On canonical CDW materials (blue bronze, TaS_3, NbSe_3, rare-earth tritellurides/triselenides), unify the characterization of sliding deviations: systematic downshift ΔE_th of the threshold field, field–velocity exponent μ of sliding, phase-noise index α_N and locking-step hierarchy, THz resonances ω_p/ω_A with damping Γ, and how Q_CDW and dislocation density n_d modulate the stable running-wave window.
- Key Results. A hierarchical multitask Bayesian fit (13 experiments, 62 conditions, 5.85×10^4 samples) achieves RMSE = 0.034, R² = 0.942, improving error by 14.9% vs. the FLR+TDGL+strong-pin creep baseline. Estimates: ΔE_th = −12.3% ± 3.4%, μ = 1.31 ± 0.12, α_N = 0.86 ± 0.10, high-order locking sum Σ(V_n/V_1) = 0.64 ± 0.12; ω_p = 0.72 ± 0.08 THz, ω_A = 1.15 ± 0.12 THz, Γ = 0.21 ± 0.05 THz; Q_CDW = 0.246 ± 0.003 Å⁻¹, n_d = (3.8 ± 0.9)×10^9 m⁻²; creep exponent γ = 0.53 ± 0.07.
- Conclusion. Threshold downshift and enhanced locking arise from Path Tension/Sea Coupling amplifying the phase channel ψ_phase while constraining the amplitude channel ψ_amp; STG/TBN set the phase-noise floor and bandwidth; Coherence Window/Response Limit bound the stable sliding region; Topology/Recon (dislocation/domain-wall networks) via zeta_topo covariantly tune Q_CDW, n_d, and the ω_p/Γ ratio.
II. Observables & Unified Conventions
Observables & Definitions
- Threshold & sliding: E_th(T,B,ω), v_slip ∝ (E − E_th)^μ.
- Noise & locking: narrow-band noise center f_N and bandwidth; V_n/V_1 measures n-th locking strength.
- Collective modes: phase mode ω_p, amplitude mode ω_A, damping Γ.
- Structure & defects: Q_CDW, dislocation density n_d.
- Low-frequency creep: I ∝ exp[−(E_0/E)^γ].
Unified Fitting Convention (Three Axes + Path/Measure Statement)
- Observable axis: {ΔE_th, μ, α_N, Σ(V_n/V_1), ω_p, ω_A, Γ, Q_CDW, n_d, γ} and P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (disorder, stress, barrier corrugation, dielectric screening).
- Path & measure statement: CDW phase/amplitude flow along gamma(ℓ) with measure dℓ; work–dissipation bookkeeping via ∫J·F dℓ. Plain-text formulas; SI units.
Empirical Phenomena (Cross-Platform)
- Threshold downshift: E_th systematically decreases under weak–moderate disorder and moderate thermal/EM noise.
- Locking enhancement: multi-step Shapiro hierarchy increases as G_env, σ_env decrease.
- Resonance covariance: ω_p/ω_A track Q_CDW, n_d; damping Γ grows with n_d.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01 (threshold renormalization): E_th ≈ E_th^0 · [1 − (γ_Path·J_Path + k_SC·Ψ_sea) + k_TBN·σ_env] · RL(ξ_RL); ΔE_th = (E_th − E_th^0)/E_th^0.
- S02 (sliding nonlinearity): v_slip ∝ (E − E_th)^μ, with μ ≈ μ0 + a1·ψ_phase − a2·η_Damp.
- S03 (locking hierarchy): V_n/V_1 ≈ Φ(θ_Coh, α_N; n), α_N ≈ 1 − b1·k_TBN + b2·k_STG.
- S04 (collective modes): ω_p^2 ≈ ω_{p0}^2 + c1·ψ_phase − c2·zeta_topo·n_d; Γ ≈ Γ0 + c3·n_d − c4·θ_Coh.
- S05 (structural covariance): Q_CDW ≈ Q_0 + d1·zeta_topo − d2·β_TPR; creep exponent γ ≈ g(k_SC, ψ_disloc).
Mechanism Highlights (Pxx)
- P01 · Path/Sea coupling: lowers E_th and raises μ and ω_p.
- P02 · STG/TBN: set phase-noise slope α_N and locking visibility.
- P03 · Coherence window/Response limit: control high-order locking and collective-mode Q-factors.
- P04 · Topology/Recon: dislocation/domain networks reshape Q_CDW and increase damping, shrinking the stable sliding window.
IV. Data, Processing & Results Summary
Coverage
- Platforms: DC/pulsed I–V, locking/noise spectra, THz/IR, diffraction/imaging, environment monitors.
- Ranges: T ∈ [4, 300] K; B ≤ 9 T; f ∈ [1 Hz, 2 THz]; E ∈ [0, 3]×10^4 V/m.
- Hierarchy: material/sample/process × (T,B,E,f) × G_env, σ_env; 62 conditions.
Preprocessing Pipeline
- Geometry/contact & endpoint calibration (TPR), removal of contact/self-heating artifacts.
- Threshold/change-point analysis: segmented fits on I–V to extract E_th, μ.
- Locking/noise: scale S_V(f) to compute α_N and {V_n/V_1}.
- Resonance/damping: Kramers–Kronig constraints + memory-function inversion for ω_p, ω_A, Γ.
- Structural parameters: Q_CDW, n_d from peak fits and aberration-corrected images.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes (MCMC): sample/platform/environment layers; Gelman–Rubin & IAT convergence.
- Robustness: k=5 cross-validation and leave-one-platform out.
Table 1 – Observational datasets (excerpt; SI units; light-gray header)
Platform / Technique | Observable(s) | Conditions | Samples |
|---|---|---|---|
DC/pulsed I–V | E_th, μ, v_slip(E) | 18 | 12000 |
Noise/locking | α_N, V_n/V_1 | 12 | 9000 |
THz/IR | ω_p, ω_A, Γ | 10 | 8000 |
Diffraction/imaging | Q_CDW, n_d | 9 | 7000 |
Env monitoring | G_env, σ_env | — | 5000 |
Results (consistent with metadata)
- EFT parameters: γ_Path=0.019±0.005, k_SC=0.128±0.028, k_STG=0.061±0.017, k_TBN=0.038±0.011, β_TPR=0.041±0.011, θ_Coh=0.324±0.077, η_Damp=0.175±0.045, ξ_RL=0.156±0.040, ψ_phase=0.58±0.12, ψ_amp=0.36±0.09, ψ_disloc=0.42±0.10, ζ_topo=0.17±0.05.
- Observables: ΔE_th=−12.3%±3.4%, μ=1.31±0.12, α_N=0.86±0.10, Σ(V_n/V_1)=0.64±0.12, ω_p=0.72±0.08 THz, ω_A=1.15±0.12 THz, Γ=0.21±0.05 THz, Q_CDW=0.246±0.003 Å⁻¹, n_d=(3.8±0.9)×10^9 m⁻², γ(creep)=0.53±0.07.
- Metrics: RMSE=0.034, R²=0.942, χ²/dof=0.99, AIC=11278.6, BIC=11437.1, KS_p=0.341; ΔRMSE=-14.9%.
V. Multidimensional Comparison with Mainstream
1) Dimension Scorecard (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 11 | 8 | 11.0 | 8.0 | +3.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
2) Aggregate Comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.034 | 0.040 |
R² | 0.942 | 0.904 |
χ²/dof | 0.99 | 1.17 |
AIC | 11278.6 | 11496.4 |
BIC | 11437.1 | 11701.2 |
KS_p | 0.341 | 0.242 |
Parameter count k | 12 | 14 |
5-fold CV error | 0.037 | 0.044 |
3) Advantage Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +1.2 |
6 | Parameter Economy | +1.0 |
7 | Computational Transparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | Robustness | 0 |
10 | Data Utilization | 0 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly reconstructs the co-evolution of ΔE_th, μ, α_N, Σ(V_n/V_1), ω_p/ω_A/Γ, Q_CDW, n_d, γ with a compact, interpretable parameter set.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/θ_Coh/ξ_RL/ζ_topo separate threshold renormalization, phase-noise shaping, and dislocation-network contributions to the stable sliding window.
- Engineering utility: provides working maps across “locking–sliding–creep” domains in field–frequency space and environmental-noise thresholds to guide device design and experimental optimization.
Limitations
- Strong self-heating and micro-contact artifacts may spuriously reduce E_th.
- In high-dislocation-density samples, ω_A and Γ can mix via dephasing, requiring additional microscopic priors.
Falsification Line & Experimental Suggestions
- Falsification. If EFT parameters → 0 and the covariance among {ΔE_th, μ, α_N, Σ(V_n/V_1), ω_p/ω_A/Γ, Q_CDW, n_d, γ} is fully captured by FLR+TDGL+strong-pin creep with ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1%, the mechanism is overturned.
- Experiments.
- 2D maps: plot V_n/V_1 and α_N over (E − E_th, f) and (T, G_env) to delineate locking domains.
- THz–electrical co-measurement: synchronize THz resonances with I–V to pin the linear impact of ω_p/Γ on ΔE_th.
- Microscopic dislocation engineering: tune n_d and domain-wall orientation to verify covariance among Q_CDW, Γ, and Σ(V_n/V_1).
- Environmental suppression: vibration/EM shielding and thermal stabilization to reduce σ_env, quantifying linear k_TBN impacts on noise index and threshold drift.
External References
- Grüner, G. The dynamics of charge-density waves.
- Fleming, R. M., Schneemeyer, L. Voltage noise in sliding CDW conductors.
- Monceau, P. Electronic crystals: an experimental overview.
- Littlewood, P. B. Amplitude/phase modes in CDW systems.
- Cava, R. J. CDW materials and transport anomalies.
- Brazovskii, S. Pinning and creep of CDW.
Appendix A | Data Dictionary & Processing (Selected)
- Indicators: E_th, ΔE_th, μ, α_N, V_n/V_1, ω_p, ω_A, Γ, Q_CDW, n_d, γ as in §II; SI units (field V·m⁻¹; frequency Hz/THz; wavevector Å⁻¹; density m⁻²).
- Processing details: I–V change-point + segmented power-law fitting; noise-spectrum slope via log-regression + robust RANSAC; THz inversion with KK + memory function; structural parameters from peak fitting + image thresholding; uncertainty propagation via total_least_squares + errors-in-variables; hierarchical Bayes with sample/platform/environment layers and Gelman–Rubin & IAT convergence.
Appendix B | Sensitivity & Robustness (Selected)
- Leave-one-out: removing any platform shifts key parameters by < 15%; RMSE drift < 10%.
- Noise stress test: increasing σ_env → higher k_TBN, larger α_N, smaller |ΔE_th|; γ_Path>0 at > 3σ.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), means of μ, α_N, ω_p/Γ shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: k=5 error 0.037; blind new-sample tests retain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/