HomeDocs-Technical WhitePaper02-EFT.WP.Core.Equations v1.1

Chapter 3 — Constitutive Relations and Mappings


I. Aims and Scope


II. Constitutive Postulates (P31 series)


III. General Constitutive Master Form (S30-1)

S30-1 (unified form)
n_eff(x,t) def= F_map( z(x,t); theta )

IV. Model Family A: Local Algebraic (S30-2)

  1. S30-2 (local linear—saturation)
    n_eff def= clamp( a0 + a1 * bar_T + a2 * |bar_grad_T| , n_min , n_max )
    • bar_T := ( T_fil / T0 ), bar_grad_T := ( L0 * grad[T_fil] / T0 ).
    • clamp(u, u_min, u_max) := min( max(u, u_min), u_max ).
    • theta := { a0, a1, a2, n_min, n_max }; require 0 < n_min ≤ n_max.
    • check_dim: the right-hand side is dimensionless, satisfying P31-3.
  2. Anisotropic extension (S30-2a)
    n_eff def= clamp( a0 + a1 * ( p • hat_grad_T ) , n_min , n_max )
    • hat_grad_T := ( grad[T_fil] / |grad[T_fil]| ) (if the denominator is 0, set hat_grad_T := 0).
    • p(x,t) is a unit orientation vector (see Core Terms, Chapter 3).

V. Model Family B: Nonlocal Kernels and Path Averages (S30-3)

  1. S30-3 (volumetric neighborhood kernel)
    n_eff(x,t) def= n_bg + ( ∫_{B_r(x)} K_r( x - y ) * bar_T(y,t) d V )
    • K_r is a radial kernel with ( ∫_{B_r(0)} K_r(ξ) d V ) = 1.
    • n_bg ≥ 0.
    • When used with path quantities, pair with avg_gamma[•] or interpolate into S20-* via ( n_eff / c_ref ).
  2. S30-4 (pathwise kernel)
    This couples consistently to T_arr = ( ∫_gamma ( n_eff / c_ref ) d ell ) (see Chapter 2).n_eff( gamma(ell), t ) def= n_bg + ( ∫_{ell'∈[0,L_gamma]} K_ell( | ell - ell' | ) * bar_T( gamma(ell'), t ) d ell' )

VI. Non-Dimensionalization and Parameter Rules

  1. Baselines and mappings
    If F_map is expressed as F_map( bar_T , bar_grad_T , ... ; theta_bar ), then theta_bar is dimensionless.bar_x := ( x / L0 ), bar_t := ( t / t0 ), bar_T := ( T_fil / T0 ).
  2. Scale-selection guidelines
    • Fix {L0, t0, T0} and c_ref within a problem family.
    • For cross-domain comparison, provide the provenance and uncertainty of {L0, t0, T0} (see Core Terms, Chapter 6).

VII. Model Family C: Dissipation, Memory, and Dispersion (S30-5)

S30-5 (temporal convolution)
n_eff(x,t) def= n_bg + ( ∫_{0}^{t} K_tau( t - tau ) * bar_T(x, tau) d tau )

VIII. Model Family D: Statistical Closure and Uncertainty (S30-6)

S30-6 (expectation–variance closure)
n_eff(x,t) def= E[ n_hat( z(x,t); theta , eta ) ], where eta is a zero-mean noise variable.

Chapter 3 — Constitutive Relations and Mappings (continued)


IX. Physical Constraints and Regularity (S30-7 / S30-8)


X. Weak-Form Embedding and Alignment with the Mother Form


XI. Sensitivity and Adjoint Interfaces


XII. Discrete Implementation Binding (I20 Alignment)


XIII. Lint Rules and Forbidden Patterns


XIV. Typical Use Cards


XV. Pre-Release Checklist


XVI. Equation Cards (S30 Summary)


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/