Home / Docs-Technical WhitePaper / 02-EFT.WP.Core.Equations v1.1
Chapter 8 — Statistics and Coarse-Graining
I. Aims & Scope
- Unify rigorous definitions, window parameters, and exchange conditions for avg_t[•], avg_V[•], and avg_gamma[•].
- Derive time-/space-averaged minimal equations S80-* from the strong conservation law, and provide flux decomposition and closure recipes.
- Interface seamlessly with Chapter 2 (arrival time), Chapters 4/5 (governing equations), and Chapter 7 (weak-form templates); all dimensional rules follow Core.Terms §6.
II. Averaging & Filtering Operators (S80-1)
- Time average
avg_t[f; Δt](t) def= ( 1 / Δt ) * ( ∫_{t-Δt/2}^{t+Δt/2} f(τ) d τ )。
Requirement: Δt > 0, symmetric window; measure d τ. - Volume average
avg_V[f; V](x) def= ( 1 / |V| ) * ( ∫_{V} f(ξ) d V ),|V| def= ( ∫_{V} 1 d V )。 - Path average
L_gamma def= ( ∫_{gamma(ell)} 1 d ell );
avg_gamma[f] def= ( 1 / L_gamma ) * ( ∫_{gamma(ell)} f d ell )。 - S80-1 (normalization axioms)
avg_t[1]=1,avg_V[1]=1,avg_gamma[1]=1;linearity and positivity preserved;window parameters must be explicitly annotated in-form.
III. Reynolds Decomposition & Scale Separation (S80-2)
- Decomposition
For any scalar or component q, define bar_q def= avg_t[q; Δt] or avg_V[q; V]; disturbance tilde_q def= q - bar_q。
Then avg_t[tilde_q]=0、avg_V[tilde_q]=0。 - Product average and subgrid term
avg[ a * b ] = bar_a * bar_b + τ(a,b),where τ(a,b) def= avg[ (a - bar_a) * (b - bar_b) ] is the subgrid covariance (closure term).
IV. Averaged Conservation Mother Form (S80-3)
- Strong mother form (see Chapter 5)
∂_t q + div( J_q ) = S_q on Ω。 - S80-3 (averaged conservation form)
Under time averaging:
∂_t bar_q + div( bar_J_q ) = bar_S_q + R_t,with bar_q def= avg_t[q; Δt],bar_J_q def= avg_t[J_q; Δt],
R_t def= avg_t[∂_t q; Δt] - ∂_t avg_t[q; Δt] (time-exchange residual).
Under volume averaging:
∂_t bar_q + div( bar_J_q ) = bar_S_q + ( 1 / |V| ) * ( ∫_{∂V} ( J_q • nu ) d A ) + R_x,
R_x def= avg_V[ div(J_q); V ] - div( avg_V[J_q; V] )。
V. Flux Decomposition & Closure (S80-4)
- Decomposition
bar_J_q = J_q( bar_vars ) + J_sgs^q,where J_q( bar_vars ) is the prototype flux with averaged variables inserted;
J_sgs^q def= bar_J_q - J_q( bar_vars )。 - Minimal gradient-diffusion closure
J_sgs^q approx - K_sgs^q * grad[ bar_q ],K_sgs^q ≥ 0,dim(K_sgs^q) = [L]^2 / [T]。
The coefficient K_sgs^q may be empirical or given by an auxiliary model (see Methods.), and must not be confused with Chapter 4’s K_T.
VI. Exchange Conditions for Averages & Derivatives (P80-1, S80-5)
- P80-1 (sufficient exchange conditions)
With constant windows, q continuous and integrable within the window, and boundary terms satisfying Chapter 6 (zero-flux or periodic),
avg_t[∂_t q; Δt] = ∂_t avg_t[q; Δt],avg_V[ grad[q]; V ] = grad[ avg_V[q; V] ]。 - S80-5 (general residual representations)
R_t = ( 1 / Δt ) * ( q(t+Δt/2) - q(t-Δt/2) ) - ∂_t bar_q;
R_x = ( 1 / |V| ) * ( ∫_{∂V} ( ( q - bar_q ) * u_n ) d A )(when J_q = u * q, u_n def= u • nu)。
VII. Path Averaging & Arrival Time (S80-6)
- Equivalent rewrite
T_arr = ( ∫_{gamma(ell)} ( n_eff / c_ref ) d ell ) = L_gamma * avg_gamma[ n_eff / c_ref ]。
Hence S20-* additivity corresponds directly to segment-wise averaging for gamma = ⋃ gamma_k:
T_arr = ( ∑_k L_{gamma_k} * avg_{gamma_k}[ n_eff / c_ref ] )。 - Discrete realization (binding to I20-4)
For discrete segments ds_i and samples n_eff_i:
T_arr = ( ∑_i ( n_eff_i / c_ref ) * ds_i ) = L_gamma * ( ∑_i ( ( n_eff_i / c_ref ) * ds_i ) / L_gamma )。
VIII. Parameter Cards for Windows & Domains (S80-7)
S80-7 (parameterization)- Time window: Δt = α_t * t0,recommend α_t ∈ [10, 100]。
- Spatial volume: |V| = α_x * L0^d (d is spatial dimension),recommend α_x ∈ [10, 10^3]。
- Path subsegments: ds_max ≤ β * L0,recommend β ∈ [10^{-3}, 10^{-2}]。
All parameters must be explicitly stated in equations or tables; avoid implicit defaults.
IX. Dimensions & Non-Dimensionalization (S80-8)
- Dimensional closure
dim( avg_t[q] ) = dim(q),dim( avg_V[q] ) = dim(q),dim( avg_gamma[q] ) = dim(q)。 - Non-dimensional mapping
bar_t := ( t / t0 ),bar_x := ( x / L0 ),bar_q := ( q / q0 ),
then avg_{bar_t}[ bar_q ; Δbar_t ] = ( 1 / Δbar_t ) * ( ∫ bar_q d bar_t ),isomorphic to the dimensional form.
X. Interface to Weak Forms (building on Chapter 7, S80-9)
Here J_sgs^q and R_t follow S80-4/5.weak= inner_Ω[w, ∂_t bar_q] + ( ∫_{Ω} grad[w] • J_q( bar_vars ) d V ) = inner_Ω[w, bar_S_q] + B[w] + inner_Ω[ grad[w], J_sgs^q ] + inner_Ω[w, R_t ]。
time averaging gives
For weak= inner_Ω[w, ∂_t q] + ( ∫_{Ω} grad[w] • J_q d V ) = inner_Ω[w, S_q] + B[w],
Weak-form averaging
XI. Numerical Implementation Binding (I20-aligned)*
- Time-average discretization
avg_t[q; Δt] ≈ ( 1 / N_t ) * ( ∑_{k=1}^{N_t} q^{n-k} );N_t = round( Δt / Δt_num )。 - Volume-average discretization
avg_V[q; V] ≈ ( 1 / |V| ) * ( ∑_{c ∈ V} q_c * |V_c| )。 - Path-average discretization
avg_gamma[f] ≈ ( ∑_{i} f_i * ds_i ) / ( ∑_{i} ds_i ),then verify T_arr via propagate_time( n_eff_path, ds, c_ref )。 - Interface mapping
Pass K_sgs^q and window parameters as coeffs to assemble_operator; use compare_solutions(..., metrics=["L2","L_inf","T_arr"]) to assess coarse-graining error.
XII. Lint Rules & Forbidden Items
- Do not omit windows or domains: avg_t[•] must specify Δt; avg_V[•] must specify V。
- Do not use non-canonical arrival time: write ( ∫_{gamma(ell)} ( n_eff / c_ref ) d ell ) and declare gamma(ell), d ell。
- Do not mix symbols: n vs n_eff, T_fil vs T_trans must never substitute for each other。
- Do not leave closures open: if τ(a,b) or J_sgs^q appear, provide an explicit closure or parameter path.
XIII. Registrable Items & Examples
- register_equation("S80-1","definitions of avg_t/avg_V/avg_gamma (normalized integrals)","definition",anchors=["§II"],depends=[])
- register_equation("S80-3","∂_t bar_q + div(bar_J_q) = bar_S_q + R_t (+ boundary term for V)","strong",anchors=["§IV"],depends=["S50-*","S60-*"])
- register_equation("S80-4","bar_J_q = J_q(bar_vars) + J_sgs^q ; J_sgs^q approx - K_sgs^q * grad[bar_q]","model",anchors=["§V"],depends=["S50-*"])
- register_equation("S80-6","T_arr = L_gamma * avg_gamma[n_eff / c_ref]","identity",anchors=["§VII"],depends=["S20-*"])
- register_equation("S80-9","time-averaged weak form with J_sgs^q and R_t","weak",anchors=["§X"],depends=["S70-*","S50-*"])
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/