HomeDocs-Technical WhitePaper15-EFT.WP.Methods.Falsification v1.0

Chapter 8: Uncertainty & Falsification Confidence


I. Scope & Objectives


II. Terms & Symbols

  1. Posterior & predictive
    • p(theta | D), p(y | x, theta), p(y | x, D) = ( ∫ p(y | x, theta) p(theta | D) d theta ).
    • Predictive moments: mean = E[ y | x, D ], var = Var[ y | x, D ], quantile_q.
  2. Intervals & sets
    • Confidence interval CI_{1 - delta_cov}, Bayesian credible interval CrI_{1 - delta_cov}, prediction interval PI_{1 - delta_cov}.
    • Conformal prediction set: Pi(x) = { y : S(x,y) ≤ q_{1 - delta_cov} }, where S(x,y) is a nonconformity score.
  3. Uncertainty decomposition
    var_total = E_{p(theta|D)}[ var( y | x, theta ) ] + var_{p(theta|D)}( E[ y | x, theta ] ) (aleatoric vs. epistemic).
  4. Calibration & metrics
    • ECE, MCE, NLL = ( - 1/N ) * Σ log p_hat( y_i | x_i ), Brier = ( 1/N ) * Σ || p_hat_i - onehot(y_i) ||_2^2.
    • Binning: bins = {B_b}, with conf_b (mean confidence) and acc_b (mean accuracy).
  5. Online gating & risk
    Violation probability P( violation | D ); risk budget rho_budget; policy thresholds {tau_pass, tau_hold, tau_block}.
  6. Mismatch & drift
    • Consistency: delta_offon = ( norm( y_hat_off - y_hat_on ) / norm( y_hat_off ) ), R_infer = 1 - delta_offon.
    • OOD(x) (out-of-distribution score) with threshold tau_ood.

III. Postulates & Minimal Equations

with {tau_hold, tau_block} constrained jointly by rho_budget and alpha_sig, beta_err.


IV. Data & Manifest Conventions


V. Algorithms & Implementation Bindings

  1. Prototype mapping (extending I50-*)
    • I50-14 calibrate_temperature(logits:any, labels:any) -> {T:float, CalibReport}
    • I50-15 calibrate_isotonic(scores:list, labels:list) -> CalibModel
    • I50-16 conformal_calibrate(scores:list, labels:list, delta_cov:float, mode:str) -> {q:float, Pi}
    • I50-17 estimate_uncertainty(runtime:any, x:any, method:str) -> {mean:float, var:float, meta:dict}
    • I50-18 ood_score(x:any, method:str) -> float
  2. Reference flow (ECE computation)
    • Bucket confidences into bins to get B_b.
    • acc_b = ( 1/|B_b| ) * Σ 1[ y_i = argmax p_hat_i ], conf_b = ( 1/|B_b| ) * Σ max p_hat_i.
    • Emit ECE, MCE, and the reliability table/plot.
  3. Reference flow (conformal split)
    • Compute S(x_j, y_j) on the calibration set; take q_{1 - delta_cov}.
    • At prediction time, return Pi(x) or PI_{1 - delta_cov}(x); record coverage indicators Z_i.
  4. Reference flow (risk coupling)
    • Estimate r = P( violation | D ) or an admissible upper bound r_hat.
    • Apply S52-36 and S52-35, returning GateDecision with explanatory fields {ECE, cov_hat, OOD(x)}.

VI. Metrology Flows & Run Diagram


VII. Verification & Test Matrix

  1. Calibration effectiveness
    • ECE ≤ ECE_target, NLL ≤ NLL_target.
    • reliability.csv shows no systematic bias (with MCE within threshold).
  2. Coverage & robustness
    • Estimate cov_hat and Wilson intervals on the validation set and OOD subsets; require
      cov_hat ≥ 1 - delta_cov - tau_cov.
    • Under broken exchangeability (shuffling or drift), report coverage degradation and confidence-correction strategy.
  3. Decision correctness
    Replay GateDecision logs; mis-block and miss-block rates satisfy budget.power and rho_budget.
  4. Drift & consistency
    When delta_offon breaches threshold, verify that changes in ECE/cov_hat promptly trigger hold/block, with acceptable false-alarm rates.

VIII. Cross-References & Dependencies


IX. Risks, Limitations & Open Questions


X. Deliverables & Versioning

  1. Deliverables
    Calibration.card, Uncertainty.card, Conformal.card, CalibReport, UncertaintyReport, reliability.csv, pi_coverage.csv, ood_thresholds.yaml, Gate.policy, Evidence.bundle (with hash(•) and fingerprint).
  2. Versioning policy
    • Adjusting delta_cov / ECE_target → minor bump; changing the calibration or conformal strategy → major bump.
    • Any change to gating thresholds or budgets requires updated signatures and Appendix C registry.

Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/