HomeDocs-Technical WhitePaper02-EFT.WP.Core.Equations v1.1

Appendix A — Equation List


I. Fields & Ordering

This appendix lists all minimal equations and rule items (Sxx-?) in ascending code order. Each entry provides a short name, eqn (canonical form), anchors (pointers to sections in the main text), and kind (strong / weak / identity / procedure / guideline / metric / criterion).

II. Inventory (sorted by code)

  1. S10-0 Mother Form & Writing Template
    • eqn: Form: A[q] = B; weak template weak= inner_V[w, A[q]] = inner_V[w, B]
    • anchors: Chapter 1 I–III
    • kind: definition
  2. S20-1 Arrival Time (General Form)
    • eqn: T_arr = ( ∫_{gamma(ell)} ( n_eff / c_ref ) d ell )
    • anchors: Chapter 2 I–III
    • kind: identity
  3. S20-2 Segment Additivity of Arrival Time
    • eqn: If gamma = ⋃_k gamma_k, then T_arr(gamma) = ( ∑_k T_arr(gamma_k) )
    • anchors: Chapter 2 IV
    • kind: identity
  4. S20-3 Constant-Factoring Convention
    • eqn: If c_ref is constant along gamma(ell), then T_arr = ( 1 / c_ref ) * ( ∫_{gamma(ell)} n_eff d ell )
    • anchors: Chapter 2 II
    • kind: identity
  5. S30-1 Constitutive Mapping for Effective Index
    • eqn: n_eff def= F_map( T_fil, TensionGrad, rho, ... )
    • anchors: Chapter 3 I–II
    • kind: definition
  6. S30-2 First-Order Approximation Family (Linearized Example)
    • eqn: n_eff approx a0 + a1 * T_fil + a2 * div[TensionGrad] (coefficients constant or slowly varying within the domain)
    • anchors: Chapter 3 III–IV
    • kind: guideline
  7. S30-3 Differentiability & Applicability of the Mapping
    • eqn: grad_{args} F_map exists and is bounded; failure regions are marked by the constraint set D_forbid
    • anchors: Chapter 3 V
    • kind: criterion
  8. S40-1 Steady Minimal Equation for the Tension Field
    • eqn: - div( K_T * grad[T_fil] ) + alpha * T_fil = S_src on Ω
    • anchors: Chapter 4 II
    • kind: strong
  9. S40-2 Unsteady Minimal Equation for the Tension Field
    • eqn: ∂_t T_fil - div( K_T * grad[T_fil] ) + alpha * T_fil = S_src on Ω × (0, T]
    • anchors: Chapter 4 II–III
    • kind: strong
  10. S40-3 Weak Form for the Tension Field
    • eqn: weak= inner_Ω[w, ∂_t T_fil] + ( ∫_Ω grad[w] • ( K_T * grad[T_fil] ) d V ) + inner_Ω[w, alpha * T_fil] = inner_Ω[w, S_src] + B[w]
    • anchors: Chapter 4 IV
    • kind: weak
  11. S50-1 Continuity Equation
    • eqn: ∂_t rho + div( J ) = S_src
    • anchors: Chapter 5 I–II
    • kind: strong
  12. S50-2 Flux Definition (Advection–Diffusion Paradigm)
    • eqn: J def= - D * grad[rho] + U * rho
    • anchors: Chapter 5 II–III
    • kind: definition
  13. S60-1 Boundary Condition Template
    • eqn: T_fil|_{∂Ω_D} = g_D; nu • ( K_T * grad[T_fil] )|_{∂Ω_N} = g_N
    • anchors: Chapter 6 II–III
    • kind: procedure
  14. S60-2 Initial Condition Template
    • eqn: T_fil(x, 0) = T_init(x); or, in general, q(x, 0) = q_init(x)
    • anchors: Chapter 6 II
    • kind: procedure
  15. S70-1 Variational Functional
    • eqn: Lagr[q] = ( ∫_Ω ( 1/2 * grad[q] • K_T • grad[q] + 1/2 * alpha * q^2 - S_src * q ) d V ) + BC_terms
    • anchors: Chapter 7 II
    • kind: definition
  16. S70-2 Euler–Lagrange / Weak-Form Correspondence
    • eqn: delta[Lagr] = 0 weak= inner_Ω[w, ∂_t q] + ( ∫_Ω grad[w] • ( K_T * grad[q] ) d V ) + inner_Ω[w, alpha * q] - inner_Ω[w, S_src] = 0
    • anchors: Chapter 7 III–IV
    • kind: weak
  17. S80-1 Coarse-Graining Closure (Subgrid Flux)
    • eqn: bar_q def= avg_V[q; V] or avg_t[q; Δt]; J_sgs^q def= - K_sgs^q * grad[ bar_q ]
    • anchors: Chapter 8 II–III
    • kind: guideline
  18. S90-1 Discrete Conservation & Discrete Inner Products
    • eqn: inner_h[u,v] def= ( ∑_{i} u_i * v_i * |V_i| ); ∑_{i} ( div_h F )_i * |V_i| = ∑_{faces} ( F_f • nu_f ) * A_f
    • anchors: Chapter 9 II
    • kind: metric
  19. S90-2 Discrete Arrival Time
    • eqn: T_arr_h = ( ∑_i ( n_eff_i / c_ref ) * ds_i ); segment additivity T_arr_h = ( ∑_k T_arr_h^{(k)} )
    • anchors: Chapter 9 III
    • kind: identity
  20. S90-3 Assembly Consistency (Strong → Weak → Algebraic)
    • eqn: M * dq/dt + K(q) = f + b; Newton linearization K(q) ≈ K(q^n) + J(q^n) * ( q^{n+1} - q^n )
    • anchors: Chapter 9 IV
    • kind: procedure
  21. S90-4 Time-Stepping Stability Bounds
    • eqn: Convective bound Δt ≤ CFL * min_i( Δx_i / |u|_{max,i} ); diffusive bound Δt ≤ σ * min_i( Δx_i^2 / ( 2 * d * κ_{max,i} ) )
    • anchors: Chapter 9 V
    • kind: guideline
  22. S90-5 Boundary Priority Rule
    • eqn: When value and flux are both given at the same location, prefer Dirichlet; Neumann serves only as a diagnostic term
    • anchors: Chapter 9 VI
    • kind: criterion
  23. S90-6 Error and Conservation Metrics
    • eqn: E_L2 def= sqrt( ∑_i |x_i - y_i|^2 * |V_i| ); E_Linf def= max_i |x_i - y_i|; E_T def= | T_arr(x) - T_arr(y) |
    • anchors: Chapter 9 VII
    • kind: metric
  24. S90-7 Order-of-Accuracy Estimation
    • eqn: p_est def= log2( E_k / E_{k+1} ), where E_k = L2_h[ q_{h_k} - q_{h_{k+1}} ]
    • anchors: Chapter 9 VIII
    • kind: metric
  25. S90-8 Numerical Realization of Statistics
    • eqn: avg_t[q; Δt] ≈ ( 1 / N_t ) * ( ∑_{k=0}^{N_t-1} q^{n-k} ); avg_V[q; V] ≈ ( 1 / |V| ) * ( ∑_{c ∈ V} q_c * |V_c| )
    • anchors: Chapter 9 IX
    • kind: procedure
  26. S90-9 Regression Pass Criterion
    • eqn: pass if ( L2 ≤ τ_L2 and L_inf ≤ τ_Linf ) and | T_arr - T_arr_ref | ≤ τ_T
    • anchors: Chapter 9 XI
    • kind: criterion

III. Quick Jump Index (by topic)


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/