HomeDocs-Technical WhitePaper17-EFT.WP.Methods.Imaging v1.0

Chapter 9 Geometric Calibration, Distortion Correction, and Registration


One-Sentence Goal
Establish a reversible geometric mapping from physical space to pixel space; output auditable K, d, {R_i,t_i}, LUT_undistort, and cross-view/cross-modality registration transforms; and ensure reprojection and epipolar errors meet contractual limits while remaining stable in streaming scenarios.


I. Scope & Targets

  1. Inputs
    • Calibration images and metadata: { I_i }, pattern ∈ { chessboard, charuco, aruco, dot-grid }, f_mode, focus/zoom, T_cam, ts | tau_mono.
    • Target geometry: calibration board pitch d_board, board-plane normal, and planarity tolerance.
    • Priors / extrinsics: multi-camera assembly initial guesses or online synchronized observations (Chapters 5 and 11).
  2. Outputs
    • Intrinsics and distortion: K, d = { k1,k2,k3,p1,p2,... } or fisheye { k1,k2,k3,k4 }.
    • Extrinsic set: { R_i,t_i } (camera frame C relative to world frame W), plus per-frame availability tags.
    • Registration/alignment: planar homography H, epipolar geometry E,F, rigid transform T_12 ∈ SE(3), rectify maps, and warp map.
    • Artifacts & manifest: LUT_undistort, LUT_rectify, manifest.imaging.geom, hash_sha256(blob), signature.
  3. Applicability & boundaries
    • Default camera model: pinhole + Brown–Conrady distortion; fisheye uses equidistant or equisolid-angle models.
    • Plane-board assumption for initialization; final parameters from bundle adjustment that globally minimizes reprojection error.
    • Rolling shutter: optional linear motion compensation; strongly dynamic scenes require coupling with time-sync cleansing (see Methods.Cleaning v1.0, Chapter 5).

II. Terms & Variables

  1. Camera & coordinates
    • K ∈ R^{3×3}: intrinsics (fx, fy, cx, cy, s).
    • R ∈ SO(3), t ∈ R^3: extrinsics, X_C = R * X_W + t.
    • Normalized & pixel coordinates: x_n = ( x_c / z_c , y_c / z_c ), x_p = (u,v,1)^T ~ K * ( x_d, y_d, 1 )^T.
  2. Distortion
    • Brown–Conrady: d = { k1,k2,k3,p1,p2 }, with r^2 = x_n^2 + y_n^2.
    • Fisheye (equidistant): r_d = f * theta * ( 1 + k1 theta^2 + k2 theta^4 + ... ), theta = atan2( sqrt( x_n^2 + y_n^2 ), 1 ).
  3. Registration
    • Homography: H ∈ PGL(3), s * x_2 = H * x_1 (planar/far scene).
    • Epipolar: x_2^T * F * x_1 = 0, E = K_2^T * F * K_1, E = [t]_x * R.
    • Error metrics: eps_reproj (px), eps_epi (px), coverage_r (radial coverage).
  4. Units & dimensions
    unit(u,v)="px", unit(X_W)="m", unit(theta)="rad"; check_dim must pass.

III. Axioms P209-*


IV. Minimal Equations S209-*


V. Calibration & Registration Workflow M90-*


VI. Contracts & Assertions


VII. Implementation Bindings I90-*


VIII. Cross-References


IX. Quality Metrics & Risk Control

  1. Core metrics
    • rmse/p95/p99(eps_reproj), p95(eps_epi), coverage_r, inlier_rate, cond(K).
    • Runtime drift: drift_fx, drift_cx, drift_k1 evaluated over windows Delta_t; alert thresholds and rollback strategies.
    • Resource metrics (streaming): latency_undistort, cpu/mem, drop_rate.
  2. Key risks & playbooks
    • Board planarity or scale error: enable scale cross-checks or dual-board mutual verification.
    • Motion/rolling-shutter mismatch: enable S209-6 model or drop high-speed frames; couple with time-sync cleansing.
    • Model overfit: if dist_monotone fails, reduce polynomial order or switch to piecewise LUT.
    • Focal/thermal drift: map { focus, zoom, T_cam } -> { K,d } and switch configurations at runtime.
    • Cross-modality registration failure: switch to mutual information or edge-structure measures; when needed, use semi-automatic anchors.

Summary
This chapter provides a unified workflow for geometry and registration—from planar calibration and epipolar geometry to global BA—producing K, d, {R_i,t_i}, LUT_undistort/rectify, and quality reports. Manifests and signatures guarantee traceability and rollback, while contracts and metrics sustain stable operation in multi-camera / multi-modality systems and streaming deployments.


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/