HomeDocs-Technical WhitePaper18-EFT.WP.Methods.CrossStats v1.0

Chapter 12 — Hierarchical Models and Partial Pooling (Borrowing Strength)


One-line objective: Unify cross-group estimation and prediction via hierarchical Bayes and mixed-effects frameworks so that, in small-sample and heterogeneous settings, partial pooling yields robust, auditable, and dimensionally consistent statistical outputs.


I. Scope & Targets

  1. Scope
    • Grouped and small-area estimation: g ∈ {1..G}, within-group observations y_{g,j}, cross-group sharing through priors or random effects.
    • Linear/Generalized Linear Mixed Models (LMM/GLMM), Fay–Herriot small-area models, hierarchical normal means, hierarchical Poisson/Binomial rates.
    • Batch and streaming inference; window Delta_t with time-base tau_mono → ts mapping.
  2. Targets
    • Inputs: D = { (y_{g,j}, x_{g,j}, g, ts_{g,j}, m_{g,j}) }, with units & dimensions, within-group variance estimates sigma_g^2 or exposure E_g, and synchronization metadata offset/skew/J.
    • Outputs: group-level posterior p(theta_g|D), BLUP/EBLUP, predictions hat{y}_{g,*} with intervals, and manifest.stats.hier.*.

II. Terms & Symbols


*III. Axioms P312- **


*IV. Minimal Equations S312- **

  1. S312-1 (Hierarchical Normal Means)
    • Observations: ybar_g ~ N( theta_g, sigma_g^2 ); prior: theta_g ~ N( mu, tau^2 ).
    • Posterior mean: E[ theta_g | D ] = w_g * ybar_g + ( 1 - w_g ) * mu, where w_g = tau^2 / ( tau^2 + sigma_g^2 ).
    • Posterior variance: Var( theta_g | D ) = ( sigma_g^2 * tau^2 ) / ( sigma_g^2 + tau^2 ).
    • Limits: tau^2 → 0 gives full pooling theta_g → mu; tau^2 → ∞ gives no pooling theta_g ≈ ybar_g.
  2. S312-2 (BLUP for Linear Mixed Effects)
    • Model: y = X beta + Z b + e, b ~ N(0, G), e ~ N(0, R).
    • V = Z G Z' + R; hat{beta} = ( X' V^{-1} X )^{-1} X' V^{-1} y.
    • hat{b} = G Z' V^{-1} ( y - X hat{beta} ) (group-level hat{b_g} is the corresponding subvector).
  3. S312-3 (REML Marginal Likelihood)
    logL_REML = -0.5 * ( log|V| + (y - X beta)' V^{-1} (y - X beta) + const ); numerically maximize over parameters of G, R.
  4. S312-4 (Hierarchical GLMs)
    g( E[y_{g,j}|x] ) = X_{g,j} beta + Z_{g,j} b_g, b_g ~ N(0, G); approximate inference via Laplace/AGHQ or sampling; prediction intervals via linearization or posterior quantiles.
  5. S312-5 (Fay–Herriot EBLUP for Small Areas)
    • y_g = theta_g + e_g, theta_g = X_g' beta + u_g, e_g ~ N(0, V_g), u_g ~ N(0, A).
    • hat{theta_g} = w_g * y_g + ( 1 - w_g ) * X_g' hat{beta}, w_g = A / ( A + V_g ).
  6. S312-6 (Hierarchical Shrinkage for Discrete Rates)
    • Poisson: y_g ~ Poisson( E_g * lambda_g ), lambda_g ~ Gamma(a,b); E[ lambda_g | D ] = ( a + y_g ) / ( b + E_g ).
    • Binomial: k_g ~ Binom( n_g, p_g ), p_g ~ Beta(a,b); E[ p_g | D ] = ( a + k_g ) / ( a + b + n_g ).

V. Metrology Flow M30-12 (Ready → Model → Diagnose → Publish)


VI. Contracts & Assertions C30-121x


*VII. Implementation Bindings I30- **


VIII. Cross-References


IX. Quality & Risk Control

  1. SLI/SLO
    PI_coverage@0.95 ≥ 0.92; converged == true; cond(Hessian) ≤ cond_max; latency_ms_p99 ≤ 800.
  2. Risks & Fallbacks
    • Variance estimates at the boundary: use profile likelihood or regularizing priors; if needed, fall back to full-pooling or no-pooling baselines with alerts.
    • Extreme groups: trigger C30-1214, cap w_g, widen intervals, and schedule extra sampling or group merges.
    • Drift: monitor the distribution of w_g and group-level residual drift (see Chapter 7); if thresholds are exceeded, retrain and apply strategy cards.

Summary

This chapter establishes a unified approach to hierarchical/mixed-effects modeling, provides the core estimators S312-* and the closed-loop flow M30-12, and enforces contracts C30-121x to guarantee PSD variances, sensible shrinkage, and target coverage. It aligns time bases, reconciles the two T_arr formulations, and integrates drift monitoring to deliver auditable group-level estimates, predictions, and manifests.

Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/