Home / Docs-Technical WhitePaper / 20-EFT.WP.Metrology.TimeBase v1.0
Appendix D — Metrics & Drift Measures (Time-Base Specific)
One-line objective: Standardize the core metrics, drift measures, and computational gauges for time-base & synchronization systems, yielding a unified, auditable, replayable, and benchmarkable metrology stack.
I. Purpose & Scope
- Applies to
Clocks and sync links at endpoints/edge/core, covering NTP/PTP/SyncE/GNSS/holdover scenarios. - Outputs
Metric definitions S50D-*, default windows & filter gauges, threshold recommendations & alert levels, and field mappings to manifest.time.
II. Terms & Symbols
- Time error: TE(t) = ts(t) - ts_ref(t) (a.k.a. offset(t)), unit="[T]".
- Fractional frequency: y(t) = d( TE(t) ) / dt, dim="1".
- Wander–jitter decomposition: TE(t) = W(t) + J(t) where W is low-frequency wander and J is high-frequency jitter.
- Time Interval Error: TIE(t, tau) = TE(t) - TE(t - tau).
- Maximum Time Interval Error: MTIE(tau) = max_{windows} | TIE |.
- Allan family: adev(tau), mdev(tau), tdev(tau) (relations in S50D-4).
- Phase noise / spectra: S_phi(f), S_y(f); banded jitter integral per S50D-6.
- Dual-form arrival: form_const, form_general, delta_form (Appendix C).
- Drift metrics: drift_level, drift_slope, psi (population stability index), W1 (Wasserstein-1).
III. Axioms P50D- **
- P50D-1 (Time-base consistency): Compute all statistics on tau_mono, publish on ts, with unit/dim and window Delta_t attached for offset/skew/J.
- P50D-2 (Explicit filtering gauges): Wander/jitter split must declare F_HP(f_c_hp) and F_LP(f_c_lp) cutoffs and the linear-phase region.
- P50D-3 (Traceable references): ts_ref traces to upstream references (GM/NTP stratum/GNSS); record hop count and steps_removed.
- P50D-4 (Arrival mandatory): Whenever path/propagation metrics appear, record both arrival forms and enforce delta_form ≤ tol_Tarr.
- P50D-5 (Dimensional integrity): Run check_dim(expr) before publishing any metric.
IV. Minimal Equations S50D- **
- S50D-1 (Time & frequency basics)
- TE(t) = ts(t) - ts_ref(t)
- y(t) = d( TE(t) ) / dt (use forward difference or Savitzky–Golay for discrete data)
- S50D-2 (TIE/MTIE)
- TIE(t, tau) = TE(t) - TE(t - tau)
- MTIE(tau) = max_{t} | TIE(t, tau) |
- S50D-3 (Allan deviation, frequency-domain form)
- adev(tau) = sqrt( ( 1 / 2 ) * E[ ( y_{i+1} - y_i )^2 ] )
- mdev(tau) = sqrt( ( 1 / 2 ) * E[ ( \bar{y}_{i+1}^{(m)} - \bar{y}_{i}^{(m)} )^2 ] )
- S50D-4 (TDEV–MDEV relation)
tdev(tau) = ( tau / sqrt(3) ) * mdev(tau) with unit(tdev) = "s" - S50D-5 (Time-domain wander/jitter split)
J(t) = HP{ TE(t) ; f_c_hp }, W(t) = LP{ TE(t) ; f_c_lp }, and TE = W + J - S50D-6 (Spectral jitter, optional with carrier)
J_rms = ( 1 / ( 2 * pi * f_0 ) ) * sqrt( ∫_{f1}^{f2} S_phi(f) df ) - S50D-7 (Drift & distribution stability)
- drift_slope = slope( W(t) ) (robust regression)
- psi = ∑_i ( p_i - q_i ) * ln( p_i / q_i ) (reference vs. current histogram)
- W1 = ( ∫ | F_ref(x) - F_cur(x) | dx )
V. Computational Gauges & Windows
- Sampling & windows
Base TauSet = {1 s, 10 s, 100 s, 1000 s}; sliding step Δt_step = tau / 2. - Filtering
Jitter HP cutoff f_c_hp ∈ [0.1, 1] Hz; wander LP cutoff f_c_lp complementing HP; both as linear-phase FIR. - Detrending
Before computing adev/mdev/tdev/MTIE, remove the mean of TE within each window to avoid DC bias.
VI. Metric Set & Panel Mapping
- Core SLIs
- offset.mean, offset.p95, offset.p99 (unit="ns");
- skew.mean_ppm, skew.max_ppm;
- jitter.rms, jitter.p99 (unit="ns").
- Stability
adev(tau), mdev(tau), tdev(tau) for tau ∈ TauSet. - Path/arrival
form_const, form_general, delta_form, tol_Tarr, L_gamma. - Dashboard mapping (examples)
- TS.sli.offset.ns.p99 ← offset.p99
- TS.sli.jitter.ns.rms ← jitter.rms
- TS.sli.tdev.ns.tau_10 ← tdev(10 s) * 1e9
- TS.sli.mtie.ns.tau_100 ← MTIE(100 s) * 1e9
VII. Thresholds & Alerts (Default Strategy Excerpts)
- Latency & jitter
- offset.p99 ≤ 1.0e-6 s (alert), offset.p99 ≤ 5.0e-7 s (target)
- jitter.p99 ≤ 1.0e-6 s
- Stability envelope
MTIE(tau) ≤ MTIE_spec(tau); tdev(tau) ≤ tdev_spec(tau) for tau ∈ TauSet - Drift & distribution
|drift_slope| ≤ 5.0e-9 s/s, psi(offset) ≤ 0.2, W1(offset) ≤ 150 ns - Dual-form arrival
delta_form ≤ tol_Tarr (mandatory)
Thresholds must be contextualized per tier (core/aggregation/access/edge) in the strategy cards and written to contracts.
VIII. Measurement & Audit Flow M50D-1
- Alignment & denoising
align_timebase → compute TE(t); band-split W and J using complementary filters. - Core statistics
Compute offset.*, skew.*, jitter.*; evaluate TIE/MTIE and adev/mdev/tdev on TauSet. - Drift detection
Estimate drift_slope and compute psi/W1 against a reference window. - Dual-form arrival
Compute form_const/form_general in parallel; persist delta_form. - Contract evaluation
Apply Appendix B C50-*; produce contracts.summary / violations[]. - Manifest & signature
Write to manifest.time.metrics.* and chain-sign.
IX. Error & Uncertainty
- Quantification
- U = k * u_c (default k=2); for offset.p99, use order-statistics intervals.
- For tdev/adev, estimate uncertainty via effective independent samples
n_eff = ( T_total / tau ) / c_corr.
- Source decomposition
u^2(TE) = u^2(ref) + u^2(link) + u^2(node); publish alongside manifest.time.uncertainty.
X. Arrival-Time Harmonization (Coupling with Cleaning/Arrival)
- Dual forms restated
- form_const = ( 1 / c_ref ) * ( ∫ n_eff d ell )
- form_general = ( ∫ ( n_eff / c_ref ) d ell )
- delta_form = | form_const - form_general |; persist gamma(ell), d ell, L_gamma.
- Contract
Any metric release involving T_arr must include delta_form with tol_Tarr.
XI. Cross-References
- Allan-family computation & noise models: Chapter 7.
- Link & latency budgets: Chapter 4.
- Sync servos & BMCA: Chapters 5 and 10.
- Manifests & fields: Appendix C.
- Contract library: Appendix B C50-*.
- Statistical uncertainty publication: Methods.CrossStats v1.0 Appendix E.
Summary
SLOs for time services.benchmarkable and auditable, the windowing & filtering gauges, drift measures, and the dual-form arrival constraint. With one-to-one mappings to manifest.time, strategy cards, and dashboard fields, it supports adev/mdev/tdev to TE/TIE/MTIE stack from time-base metrologyThis appendix codifies aCopyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/