HomeDocs-Technical WhitePaper03-EFT.WP.Core.Parameters v1.0

Chapter 9 — Cross-Volume Binding and Use Cases


I. Chapter Goals and Binding Landscape


II. Cross-Volume Interfaces and Anchors

  1. Equation anchors (see EFT.WP.Core.Equations v1.1)
    • S20-1…S20-3 arrival time: T_arr = ( ∫ ( n_eff / c_ref ) d ell ) and the constant-factored convention.
    • S40-* tension field: strong/weak forms of T_fil(x,t) with source S_src(x,t).
    • S50-* continuity: ∂_t rho + div[J] = S_src.
    • S70-* weak-form notation: inner_V[u,v], Lagr[•], delta[Lagr].
    • S80-* statistical windows: avg_t[f; Δt], avg_V[f; V=Ω], avg_gamma[f].
  2. Implementation anchors (this volume)
    • Parameter side: I30 1…12 (registration, priors, transforms, inference, identifiability, propagation, import/export, scenario governance).
    • Equation side: I20-* (path discretization, assembly/solve, arrival-time interface propagate_time, regression and comparison).

III. Binding Postulates and Consistency Checks (P91-1…P91-4)


IV. Use Case A: Path–Arrival-Time Parameter Chain (S20- / I30- / I20-4)

  1. Scenario and objective
    • Given measured arrival times T_obs and a path family gamma = ⋃_k gamma_k with segment lengths L_k = ∫_{gamma_k} 1 d ell.
    • Objective: estimate segmentwise effective indices theta = { n_eff_k } and a shared constant c_ref, and quantify uncertainty.
  2. Modeling and binding
    • Discrete form (Minimal Equation S90-1)
      T_arr(theta) = Σ_k ( ( n_eff_k / c_ref ) * L_k ), with n_eff(ell) ≈ n_eff_k, ell ∈ gamma_k.
    • Derivatives (sensitivities, S90-2)
      ∂ T_arr / ∂ n_eff_k = L_k / c_ref;∂ T_arr / ∂ c_ref = - ( Σ_k n_eff_k * L_k ) / ( c_ref^2 )。
  3. Parameters and priors
    • Registration: register_param("ref speed","c_ref","scalar","[L][T]^-1","physical",...); register_param("segment n_eff_k",...) for each segment k.
    • Bounds: n_eff_k ≥ 1.0, c_ref > 0; transforms: n_eff_k via log, c_ref via softplus.
    • Priors: prior(n_eff_k) = LogNormal(mu_k, sigma_k); prior(c_ref) = LogNormal(mu_c, sigma_c).
  4. Likelihood and inference
    • Noise model: T_obs = T_arr(theta) + ε, ε ~ Normal(0, σ_T).
    • Likelihood: L(data | theta) = ∏_j Normal( T_obs^j | T_arr^j(theta), σ_T ).
    • Inference flow:
      1. infer_mle for initialization;
      2. infer_map to incorporate priors;
      3. posterior_sample_mcmc(..., method="NUTS") for posterior samples.
  5. Validation and propagation
    • Dimensionality: check_dim("( n_eff / c_ref ) * d ell") must pass before comparison.
    • Arrival-time propagation: propagate_uncertainty_mc(model=T_arr, prior_spec, n=10^4); report CI_{1-α}[T_arr].
    • Regression: compare_param_sets to audit theta updates; compare_solutions(..., metrics=["T_arr"]) against T_obs.
  6. Interface checklist (script skeleton)
    • discretize_path(gamma, scheme="piecewise", h=...) → {L_k}
    • register_param / set_bounds / set_prior / set_transform
    • infer_mle / infer_map / posterior_sample_mcmc
    • compute_jacobian(eqn="S20-*", params=["n_eff_k","c_ref"])
    • propagate_uncertainty_mc / export_params

V. Use Case B: Constitutive Coupling from Tension Field → Effective Index (S40- / S70- / S20-*)

  1. Scenario and objective
    With known boundaries and source S_src(x,t), solve T_fil(x,t) via S40-*; define n_eff def= F_map(T_fil, TensionGrad) and jointly calibrate constitutive parameters with arrival-time data.
  2. Constitutive family and parameters
    • Choose a family (example; declare approximation level approx=1)
      n_eff(x) approx= n0 * ( 1 + a_T * T_fil(x) + a_G * |grad[T_fil](x)| )。
    • Parameters: theta = { n0, a_T, a_G }; bounds n0 ≥ 1, a_T, a_G free in sign.
  3. Weak solve and chain-rule sensitivity
    • Weak form (notation inner_V[•,•])
      find T_fil ∈ V : inner_V( grad[T_fil], grad[v] ) = inner_V( S_src, v ) + BC terms, ∀ v ∈ V0。
    • Chain rule
      ∂ T_arr / ∂ theta_i = ∫_gamma ( ( ∂ n_eff / ∂ theta_i ) / c_ref ) d ell,
      where ∂ n_eff / ∂ a_T = n0 * T_fil, ∂ n_eff / ∂ a_G = n0 * |grad[T_fil]|, ∂ n_eff / ∂ n0 = 1 + a_T T_fil + a_G |grad[T_fil]|。
      Implementation: compute_jacobian(eqn="S20-* ∘ S40-*", params=["n0","a_T","a_G"]).
  4. Observations and likelihood
    • Option A: use T_arr data (same noise model as Use Case A).
    • Option B: if local n_eff observations exist, add L_local = ∏ Normal( n_eff_obs | n_eff(theta), σ_n ).
    • Joint likelihood: L = L_Tarr * L_local (conditionally independent).
  5. Steps (end-to-end)
    • register_param for {n0,a_T,a_G,c_ref}; set priors and transforms.
    • assemble_operator / solve_* for T_fil; use S70-* weak assembly if needed.
    • Line integral: avg_gamma[n_eff / c_ref] to obtain T_arr(theta).
    • infer_map or posterior_sample_mcmc to calibrate theta.
    • propagate_uncertainty_mc to report CI_{1-α}[n_eff(x)] and path CI_{1-α}[T_arr].
  6. Consistency checks
    check_dim("n_eff / c_ref"), path declaration gamma(ell), and window alignment (if T_fil is time-averaged, synchronize with avg_t[•; Δt]).

VI. Use Case C: Continuity–Flux with Windowed Observations (S50- / S80-)

  1. Scenario and objective
    Observations are time–volume windowed flux J or rate of density change. The goal is to identify transport parameters and co-constrain with T_arr.
  2. Observation model (S90-3)
    Y_obs def= avg_t[ avg_V[ g(rho,J); V=Ω ] ; Δt ] + ε, where g(•) is the measurement operator (e.g., div[J] or boundary average of J•n_hat), and ε is observation noise.
  3. Binding steps
    • On the I30 side, register transport parameters (e.g., diffusivity D, driving coefficient k_T); set bounds/prior/transform.
    • On the equation side, assemble/solve rho,J via S50-*, then form the model output Y(theta) using S80-* (avg_t / avg_V).
    • Build the likelihood L(Y_obs | theta) and run infer_map or sampling.
    • If co-constraining with T_arr, use the joint likelihood and, via compute_jacobian, check the condition number of coupled parameters; apply decorrelation strategies (e.g., regularize_cov) as suggested in Chapter 5 if needed.
  4. Validation essentials
    Declare the window Δt and volume V; verify ( n_eff / c_ref ) * d ell is dimensionless and g(rho,J) is dimensionally closed.

VII. Executable Script Checklists (Minimal Workflows Mx-5A/B/C)


VIII. Binding Quality Gates and Regression


IX. Misuse and Lint Rules


X. Output Anchors and Numbering


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/