HomeDocs-Technical WhitePaper21-EFT.WP.Metrology.Sync v1.0

Appendix D — Metrics & Drift Measures (Synchronization-Specific)


I. Purpose & Scope


II. Metric Families & Unit Conventions

  1. Time error & derivative
    • offset(t): time error w.r.t. reference, unit s, dim="[T]".
    • skew(t) = d offset(t) / dt: frequency error, unit s/s, dim="1".
  2. Jitter & delay
    • J_rms, J_pp: RMS and peak-to-peak time/phase jitter, unit s.
    • latency: one-way or round-trip quantiles, unit s.
    • PDV: packet delay variation (e.g., p99), unit s.
    • asym: link asymmetry estimate, unit s.
  3. Allan family & time-domain stability
    • ADEV(tau), MDEV(tau), HDEV(tau): unit 1.
    • TIE(t), MTIE(tau), TDEV(tau): unit s.
  4. Dual-form arrival time
    • T_arr.form1 = ( 1 / c_ref ) * ( ∫ n_eff d ell )
    • T_arr.form2 = ( ∫ ( n_eff / c_ref ) d ell )
    • delta_form = | T_arr.form1 - T_arr.form2 | (unit s).
  5. Drift measures
    • Distributional distances: W1 (discrete approximation), KL, PSI (dimensionless).
    • Trends: drift_slope (robust slope of offset or skew, unit s/s or s/s²), drift_level ∈ {none, soft, hard}.

III. Sampling, Windows & Publication Rules

  1. Sampling & denoising
    • Raw timestamp period tau0; statistical window Delta_t = m * tau0.
    • Sliding aggregation: hop size hop ∈ [0.1, 0.5] * Delta_t.
  2. Effective samples & weights
    • For weighted statistics, publish n_eff = ( ( ∑ w_i )^2 ) / ( ∑ w_i^2 ).
    • Publish unit(x), dim(x), and u(x) (standard uncertainty).
  3. Publication
    Compute internally on tau_mono; publish on ts, recording the mapping for offset/skew/J and window.

IV. Minimal Equations S60D- (Definitions & Computables)*

  1. S60D-1 (offset/skew)
    offset_k = ts_node_k - ts_ref_k;skew_k = ( offset_k - offset_{k-1} ) / tau0。
  2. S60D-2 (J_rms/J_pp)
    J_rms = sqrt( mean( ( offset_k - mean(offset) )^2 ) );J_pp = max(offset) - min(offset)。
  3. S60D-3 (PDV)
    PDV_pq = percentile(delay, q) - percentile(delay, p)(commonly p=0.01, q=0.99; or publish pdv.p99 directly)。
  4. S60D-4 (ADEV) (discrete, tau = m * tau0)
    ADEV(tau) = sqrt( ( 1 / ( 2 * (N - 2m) ) ) * ∑_{k=1}^{N-2m} ( y_{k+2m} - 2*y_{k+m} + y_k )^2 ) where y_k is window-averaged fractional frequency.
  5. S60D-5 (TIE/MTIE/TDEV)
    • TIE(t_k) = offset_k - offset_0;
    • MTIE(tau) = max_{u,v: v-u=tau} | offset_v - offset_u |;
    • TDEV(tau) = sqrt( (1/2) * mean( ( offset_{k+2m} - 2*offset_{k+m} + offset_k )^2 ) ) / tau。
  6. S60D-6 (W1/KL/PSI) (histogram with bins=b, smoothing eps>0)
    • W1 = ∑_{b} | CDF_ref(b) - CDF_cur(b) | * Δb;
    • KL = ∑_{b} p_ref(b) * log( p_ref(b) / ( p_cur(b) + eps ) );
    • PSI = ∑_{b} ( p_ref(b) - p_cur(b) ) * log( p_ref(b) / ( p_cur(b) + eps ) )。
  7. S60D-7 (delta_form)
    delta_form = | ( 1 / c_ref ) * ( ∫ n_eff d ell ) - ( ∫ ( n_eff / c_ref ) d ell ) |。

V. Drift Detection Flow M60-D1 (Ready → Detect → Classify → Act)

  1. Ready
    • Align tau_mono; select Delta_t; choose ref (prior stable window or golden period).
    • Build histograms & quantiles for ref and cur.
  2. Measure
    • Compute W1/KL/PSI for {offset, skew, delay, pdv}.
    • Compute drift_slope (Theil–Sen or Huber—robust to outliers).
    • Evaluate delta_form, ADEV/MDEV/HDEV at key tau.
  3. Classify
    • Map thresholds to drift_level ∈ {none, soft, hard}.
    • Enforce temporal consistency: promote only after k consecutive breaches to avoid jittery false alarms.
  4. Act
    • soft: de-weight PTP samples, tighten servo bandwidth, increase message rate.
    • hard: trigger holdover/failover, switch GM, lock audit & replay artifacts.
  5. Persist
    Write to manifest.sync.metrics.* and contracts.*; sign & freeze (Appendix C).

VI. Contracts & Threshold Suggestions C60- (Baseline; tune per domain)*


VII. Implementation Bindings I60- (Measurement & Monitoring)*


VIII. Cross-References


IX. Panel Mapping & Publication Fields


Summary

; during operations, panels and alerts close the loop for continuous compliance.manifest.sync for synchronization metrics. All thresholds are codified via C60- contracts* and persisted in unified vocabulary, computable forms, and drift workflowThis appendix supplies a

Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/