Home / Docs-Technical WhitePaper / 04-EFT.WP.Core.Metrology v1.0
Chapter 1 — Metrology System and Unit Baselines
I. Chapter Objectives and Deliverables
- Establish the minimal postulates and the base dimension set for the EFT metrology system, and fix the DimStr syntax and equivalence rules.
- Provide a unified convention for unit registration and derivation logic, bound to implementation interface I40 1.
- Outputs of this chapter: postulates P90-1…P90-3, the DimStr syntax card, a unit-registration list (≥30 entries), and a cross-volume example (dimensional verification of arrival time T_arr).
II. Dimension Set and Dimensional Postulates (P90-1…P90-3)
- P90-1 Dimension Closure: any physical expression is representable via closed operations on a power set of dimensions. With base dimensions { [L], [T], [M], [Qe], [Temp] }, a dimension can be written as "[L]^a [T]^b [M]^c [Qe]^d [Temp]^e", where a,b,c,d,e ∈ ℤ; omit empty exponents.
- P90-2 Unit Invariance: any two units sharing the same dimension are related by a unique affine transform v_to = a * v_from + b, where b != 0 is permitted only for unit families with an offset zero (e.g., degC ↔ K).
- P90-3 Dimensional Consistency: measurement equations must satisfy dim(lhs) = dim(rhs); the system interface check_dim(expr) is a mandatory gate—expressions that fail must not enter computation or reporting pipelines.
III. DimStr Syntax and Equivalence Rules
- Syntax
- Product of factors: DimStr := Factor_1 * Factor_2 * ... * Factor_k。
- Factor: Factor := "[" Base "]" "^n", Base ∈ { L, T, M, Qe, Temp }, n ∈ ℤ; omit the exponent when n = 1。
- Equivalence
- Commutative/associative: factor order is irrelevant; exponents of identical base dimensions add and may be merged。
- Dimensionless: denote as "[1]" or empty; e.g., radian, ratios, probabilities。
- Legality: unregistered base-dimension tags are forbidden; fractional exponents are forbidden。
IV. Unit Registration Strategy and Interface Binding (I40 1)
- Register units via register_unit(name:str, symbol:str, dim:str, factor_to_SI:float, offset_to_SI:float=0.0)。
- Define derived units via define_derived_unit(symbol:str, expr:str), where expr is composed from registered units and integer powers。
- Constraints
- dim(symbol) must be consistent with its conversion chain to SI。
- Units with offsets must declare offset_to_SI explicitly。
- Aliases are handled by a separate alias interface and are not redefined here。
V. SI Baselines and Common Derivations — Unit Registration List (≥30 examples)
- register_unit("meter", "m", "[L]", 1.0)
- register_unit("kilometer", "km", "[L]", 1.0e3)
- register_unit("centimeter", "cm", "[L]", 1.0e-2)
- register_unit("millimeter", "mm", "[L]", 1.0e-3)
- register_unit("micrometer", "um", "[L]", 1.0e-6)
- register_unit("nanometer", "nm", "[L]", 1.0e-9)
- register_unit("second", "s", "[T]", 1.0)
- register_unit("millisecond", "ms", "[T]", 1.0e-3)
- register_unit("microsecond", "us", "[T]", 1.0e-6)
- register_unit("minute", "min", "[T]", 60.0)
- register_unit("hour", "h", "[T]", 3600.0)
- register_unit("kilogram", "kg", "[M]", 1.0)
- register_unit("gram", "g", "[M]", 1.0e-3)
- register_unit("milligram", "mg", "[M]", 1.0e-6)
- register_unit("kelvin", "K", "[Temp]", 1.0)
- register_unit("degC", "degC", "[Temp]", 1.0, 273.15)
- register_unit("coulomb", "C", "[Qe]", 1.0)
- register_unit("ampere", "A", "[Qe][T]^-1", 1.0)
- register_unit("milliampere", "mA", "[Qe][T]^-1", 1.0e-3)
- define_derived_unit("Hz", "s^-1")
- define_derived_unit("m_per_s", "m*s^-1")
- define_derived_unit("m_per_s2", "m*s^-2")
- define_derived_unit("N", "kg*m*s^-2")
- define_derived_unit("Pa", "N*m^-2")
- define_derived_unit("J", "N*m")
- define_derived_unit("W", "J*s^-1")
- register_unit("bar", "bar", "[M][L]^-1[T]^-2", 1.0e5)
- define_derived_unit("V", "W*A^-1")
- define_derived_unit("ohm", "V*A^-1")
- define_derived_unit("F", "C*V^-1")
- define_derived_unit("H", "ohm*s")
- register_unit("eV", "eV", "[M][L]^2[T]^-2", 1.602176634e-19)
- register_unit("rad", "rad", "[1]", 1.0)
- define_derived_unit("sr", "rad^2")
- define_derived_unit("S", "ohm^-1")
- define_derived_unit("T", "Wb*m^-2") (requires implementation to resolve Wb = V*s first)
- define_derived_unit("Wb", "V*s")
VI. Compound Units and Writing Conventions
- Express products/quotients with powers, prefer parentheses: ( m*s^-1 ), ( kg*m*s^-2 )。
- Linear combinations or affine transforms apply only between units of identical dimension, e.g., temperature scale: K = ( 1 ) * degC + 273.15。
- Dimensionless quantities (angles, ratios) are denoted "[1]", but reports should still state unit symbols (e.g., rad, %)。
VII. Cross-Volume Example: Dimensional Verification of Arrival Time T_arr
- Constant-factored convention: T_arr = ( 1 / c_ref ) * ( ∫_gamma n_eff d ell )。
If dim(c_ref) = "[L][T]^-1", dim(n_eff) = "[1]", dim(d ell) = "[L]", then the integrand has dimension "[L]", and the overall dimension is "[T]"。 - General convention: T_arr = ( ∫_gamma ( n_eff / c_ref ) d ell )。
The integrand dimension is ( "[1]" / "[L][T]^-1" ) * "[L]" = "[T]", so the integral still yields "[T]"。 - Under the convention t0 def= L0 / c_ref, one may write
T_arr / t0 = ( ∫_gamma ( n_eff / c_ref ) d ell ) / ( L0 / c_ref ) = ∫_gamma ( n_eff ) d bar_ell,where d bar_ell = d ell / L0; the right-hand side is dimensionless, satisfying P90-3 and the reporting convention。
VIII. Chapter Checks and Deliverable List
- Dimensional postulate card: P90-1…P90-3。
- DimStr syntax card: composition rules and legality for DimStr。
- Unit registration list: see §V (exportable via export_units("yaml"))。
- Cross-volume consistency example: the two T_arr conventions’ dimensional-conservation proof, usable directly as a pre-check for bind_to_equation(S20-*, "strict")。
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/