Home / Docs-Technical WhitePaper / 23-EFT.WP.Metrology.PathCorrection v1.0
Chapter 6 — Ionospheric Delay (TEC / Dual-Frequency)
One-Sentence Goal
Center the model on TEC, establish the first-order 1/f^2 dispersion and the dual-frequency ionosphere-free combination, provide the mapping from VTEC to STEC, the sign conventions for delays, and a compliance template, and persist artifacts as manifest.path.iono.*.
I. Scope and Objects
- Inputs
- Frequency & observables: f or {f1,f2}, code pseudorange P(f) (m), carrier-phase equivalent range L(f) (m).
- Fields & mapping: TEC sources (VTEC/STEC/GIM grids), mapping ∈ {thin_shell, GIM, NeQuick, 3D}.
- Geometry & time: gamma(ell) or LOS, elevation elev, timestamp ts, site info phi,H.
- Reference: RefCond (TEC data source, update cadence, spatial resolution, h_iono).
- Outputs
- First-order ionospheric delay: T_iono_group(f), T_iono_phase(f), and slant-path length term SLD(f) (m).
- Dual-frequency products: ionosphere-free observable obs_if, STEC_hat estimate and uncertainty.
- Applicability and Boundaries
Common microwave ranging bands f ∈ [1, 30] GHz, away from strong absorption lines; during strong disturbances/storms, tag and optionally include second-order terms.
II. Terms and Variables
- TEC: total electron content along the path, unit(TEC) = "el/m^2"; 1 TECU = 1e16 el/m^2.
- VTEC: zenith TEC, unit = "el/m^2"; STEC: slant TEC.
- M_iono(elev): mapping from VTEC to STEC, unit = "1".
- K_iono: first-order ionospheric constant, chosen so that SLD = ( K_iono * STEC / f^2 ) is in meters; unit(K_iono) is consistent with TEC,f.
- SLD(f): ionosphere-induced equivalent path-length change (m).
- T_iono_group = + SLD / c_ref, T_iono_phase = - SLD / c_ref, unit = "s", dim = "[T]".
- DCB_rx, DCB_tx: receiver/transmitter differential code biases, unit = "m" or "s" (see Instrument volume).
- h_iono: thin-shell height (m); Re: mean Earth radius (m).
III. Axioms P806-*
- P806-1 (Cold, Weak-Collision Plasma) — In first order, the ionosphere advances phase and retards group, with dispersion ∝ 1/f^2.
- P806-2 (Mapping) — A monotone, geometrically interpretable M_iono(elev) exists such that STEC = M_iono(elev) * VTEC, with d M_iono / d elev ≤ 0.
- P806-3 (Dual-Frequency) — If {f1,f2} are available, a linear combination cancels the first-order ionospheric term; residuals include higher-order terms, DCB, and noise.
- P806-4 (Path Integral) — TEC = ( ∫_{gamma ∩ iono} N_e d ell ), where N_e is electron density; compute T_iono with both formulations and persist delta_form.
- P806-5 (Compliance Fields) — TEC source, spatial/temporal resolution, and update cadence are mandatory records; missing fields require downgrade/fallback.
- P806-6 (Second-Order Tagging) — Under geomagnetic storms or high-latitude disturbances, enable O(1/f^3, 1/f^4) corrections and tag; never apply silently.
IV. Minimal Equations S806-*
- S806-1 (First-Order Refractive Index and Path Terms)
n_phi(f) ≈ 1 - ( K_iono' * N_e / f^2 ), n_g(f) ≈ 1 + ( K_iono' * N_e / f^2 ).
After path integration, obtain the length term
SLD(f) = ( K_iono * STEC / f^2 ),
hence
T_iono_group(f) = + ( SLD / c_ref ), T_iono_phase(f) = - ( SLD / c_ref ).
check_dim( SLD ) = "[L]", check_dim( T_iono_* ) = "[T]". - S806-2 (Thin-Shell Mapping, Geometric Form)
Let z = pi/2 - elev, psi = arcsin( ( Re / ( Re + h_iono ) ) * cos(elev) ),
M_iono(elev) = 1 / cos( psi ) = 1 / sqrt( 1 - ( ( Re * cos(elev) / ( Re + h_iono ) )^2 ) ).
STEC = M_iono * VTEC. - S806-3 (Dual-Frequency Ionosphere-Free Combination)
For any co-direction, co-epoch observable R(f) ∈ { P(f), L(f) } (meters), define
obs_if = ( f1^2 * R(f1) - f2^2 * R(f2) ) / ( f1^2 - f2^2 ).
The first-order ionospheric term cancels in obs_if, leaving geometry, clocks, and noise.
Sign convention: R = P uses pseudorange; R = L uses phase equivalent range (phase must be multiplied by lambda). - S806-4 (Estimating STEC from Dual Frequency)
With ΔR = R(f2) - R(f1),
STEC_hat = ( f1^2 * f2^2 / ( K_iono * ( f1^2 - f2^2 ) ) ) * sgn(R) * ( ΔR - DCB_rx - DCB_tx ),
where sgn(P) = +1, sgn(L) = -1.
If ΔR mixes P and L, apply the appropriate sgn and bias models to each. - S806-5 (Two-Form Consistency Term)
T_iono(f) = ( 1 / c_ref ) * ( ∫_{iono} ( n_eff - 1 ) d ell ) and
T_iono(f) = ( ∫_{iono} ( ( n_eff - 1 ) / c_ref ) d ell )
are numerically equivalent; use delta_form to monitor consistency and quadrature error. - S806-6 (Second-Order Corrections, Optional)
When policy triggers, include T_iono^(2) terms ∝ 1/f^3 and ∝ 1/f^4 (involving B_parallel and density gradients); implementation is bound via I80-62 and must be tagged on output.
V. Metrological Workflow M80-6
- Ready — Acquire {f or f1,f2} and P,L; align to tau_mono. Fetch TEC source or GIM grid and interpolate to the IPP.
- Map — Instantiate M_iono(elev) (given Re,h_iono or model parameters) and map VTEC → STEC.
- First-Order Solve — Compute SLD(f) = K_iono * STEC / f^2, then T_iono_group, T_iono_phase.
- Dual-Frequency & Biases — If {f1,f2} exist, estimate DCB_rx, DCB_tx (see Instrument); apply S806-4 to get STEC_hat and u(STEC_hat).
- Checks — Compute delta_form and physical-bound assertions; verify sgn(P/L) consistency and tag anomalies.
- Persist — Emit
manifest.path.iono = { T_iono_group(f), T_iono_phase(f), SLD(f), STEC, VTEC, M_iono, model, RefCond, DCB, u/U, delta_form, tags }. - Monitor — Maintain TEC_bias, map_residual, and storm_flag to drive second-order switches and guardbands.
VI. Contracts and Assertions (C80-61x)
- C80-611 Freshness — age(TEC) ≤ Delta_t (default Delta_t ≤ 15 min); otherwise downgrade or fall back.
- C80-612 Geometric Bound — elev ≥ elev_min (default 5°); below this, ray trace or inflate uncertainty.
- C80-613 Physical Range — VTEC ≥ 0, STEC ≥ VTEC, M_iono ≥ 1 and monotone.
- C80-614 Sign Consistency — T_iono_group ≥ 0, T_iono_phase ≤ 0; otherwise tag sign_mismatch.
- C80-615 Dual-Frequency Validity — |f1 - f2| / min(f1,f2) ≥ r_min (suggest r_min = 0.1), else the combination is ill-conditioned.
- C80-616 Bias Disclosure — Persist DCB_rx, DCB_tx; if missing, tag dcb_unmodeled on STEC_hat and inflate u.
- C80-617 Two-Form Difference — delta_form ≤ tol_Tarr (suggest ≤ 0.05 ns, tuned to system SLO).
- C80-618 Storms / High Latitudes — When storm_flag = true, enable T_iono^(2) and record strategy/parameters under contracts.*.
- C80-619 Dimensional Consistency — check_dim( SLD ) = "[L]", check_dim( T_iono_* ) = "[T]".
VII. Implementation Bindings I80-*
- I80-61 model_ionosphere(TEC, f, mapping) -> { T_iono_group, T_iono_phase, SLD, meta:{RefCond, mapping, h_iono}, qc:{u, delta_form}, tags }
Invariants: T_iono_group ≥ 0, T_iono_phase ≤ 0, delta_form ≤ tol_Tarr. - I80-62 estimate_TEC_dualfreq(P1,P2,L1,L2,f1,f2,DCB,policy) -> { STEC_hat, u, tags }
- I80-63 map_VTEC_to_STEC(VTEC, elev, Re, h_iono, model) -> { STEC, M_iono }
- I80-64 apply_ionofree(obs1,obs2,f1,f2) -> obs_if
- I80-65 assert_iono_contracts(payload, rules) -> report
- I80-66 emit_path_manifest_iono(payload, policy) -> manifest.path.iono
VIII. Cross-References
- Troposphere and elevation mapping: Chapter 5.
- Ray tracing and strong refraction: Chapter 9.
- Two-form numerics and delta_form: Chapter 10 and EFT.WP.Methods.Cleaning v1.0.
- Time base, sync, and DCB calibration: EFT.WP.Metrology.TimeBase v1.0, EFT.WP.Metrology.Sync v1.0, EFT.WP.Metrology.Instrument v1.0.
- Environmental fusion and policy switches: Chapter 11.
IX. Quality and Risk Control
- Target SLO — Under quiet ionosphere and qualified TEC sources: p95( |error(T_iono_group)| ) ≤ 0.3 ns, p99 ≤ 0.6 ns; raise guardbands during storm conditions.
- Drift Monitoring — Long-term bias( STEC_hat - STEC_model ) ≈ 0; keep map_residual within thresholds; on deviation, first check DCB and mapping parameters.
- Fallback — Without dual frequency or fresh TEC, fall back to broadcast or historical fields; explicitly inflate u(T_iono) and record the policy card.
- Audit & Traceability — Persist RefCond.source, mapping, h_iono, DCB, contracts.*, and delta_form; manage version changes per Appendix F.
Summary
This chapter standardizes the first-order 1/f^2 ionospheric model, VTEC → STEC mapping, and the dual-frequency ionosphere-free combination, yielding the minimal key set for manifest.path.iono:
manifest.path.iono = { T_iono_group(f), T_iono_phase(f), SLD(f), STEC, VTEC, M_iono, K_iono, model, mapping, RefCond:{source,res,Delta_t,h_iono}, DCB:{rx,tx}, u, U, delta_form, contracts.*, tags }.
Together with Chapters 5, 9, 10, and 11, the principal ionospheric term can be stably isolated on free-space links while preserving two-form consistency and meeting system SLOs.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/