Home / Docs-Technical WhitePaper / 23-EFT.WP.Metrology.PathCorrection v1.0
Chapter 8 — Fiber/Cable Paths (Thermal Drift / Dispersion / Connectors)
One-Sentence Goal
Center the model on n_g(f,T) and build a unified treatment of group delay, temperature coefficients, chromatic/velocity dispersion, and connector-induced extra delay for optical fibers and cables; provide round-trip symmetry auditing and calibration conventions, and persist outputs as manifest.path.fiber.*.
I. Scope and Objects
- Inputs
- Medium & structure: cable_spec = { type, L_gamma, fiber/coax class, lambda or f, PMD_coef, D(lambda), S = dD/dlambda, alpha_L, dn_g/dT, splices, connectors }.
- Environment: temp_profile(x,t) or equivalent T_eff(t); segmented temperatures and weights for rooms/shafts/conduits.
- Signaling & directionality: single-fiber bidirectional or dual-fiber bidirectional; lambda_AB, lambda_BA or f_AB, f_BA; WDM/DWDM.
- Measurements: RTT (round trip), OTDR/S-params, loopback / comparison links, ts.
- Reference: RefCond (data sources, update cadence, versioning, installation topology hash).
- Outputs
- T_fiber(f) or T_fiber(lambda), with components: T_geom, T_TCD, T_CD, T_PMD, T_conn, and round-trip asymmetry residual epsilon_asym.
- Quality fields: delta_form, u(T_fiber), tags, and policy cards.
- Applicability and Boundaries
- Group-delay modeling for SMF, PMF, dispersion-compensating fiber (DCF), coaxial cable, and twisted pair in the propagation domain.
- Digital switching, buffering, and protocol-stack processing delays belong to the Instrument volume and enter here only as interface variables.
II. Terms and Variables
- n_phi(f,T) phase index; n_g(f,T) group index; unit = "1".
- T_fiber(f) = ( ∫_{gamma} n_g(f,T) d ell ) / c_ref, unit = "s", dim = "[T]".
- L_gamma = ( ∫_{gamma} 1 d ell ), unit = "m".
- alpha_L = ( 1 / L ) * dL/dT (linear thermal expansion), unit = "1/K".
- dn_g/dT (thermo-optic contribution to group index), unit = "1/K".
- D(lambda) (chromatic-dispersion parameter), unit = "ps/(nm•km)"; S = dD/dlambda, unit = "ps/(nm^2•km)".
- beta2 (group-velocity dispersion), unit = "s^2/m"; PMD_coef (first-order PMD), unit = "ps/√km"; DGD (differential group delay), unit = "ps".
- v_p(f,T) (phase velocity, cable), VF = v_p/c_ref (velocity factor).
- tau_conn (connector/device group delay), tau_ripple(f) = - d arg(H_conn)/d omega.
- epsilon_asym = ( T_AB - T_BA ) / 2 (round-trip asymmetry residual).
III. Axioms P808-*
- P808-1 (Piecewise Path Integral) — Express propagation delay by segmentwise integration:
T_med = ( ∫_{segments} ( n_g(f,T(x,t)) / c_ref ) d ell ) + ∑ tau_conn, with segment-level RefCond recorded. - P808-2 (Group-Speed Convention) — Use n_g, not n_phi, for arrival-time questions in fibers/cables.
- P808-3 (Additive Thermal Drift) — Under small drifts and weak nonlinearity, the first-order temperature-induced delay change is additive, with dT/dT determined jointly by dn_g/dT and alpha_L.
- P808-4 (Separable Dispersion) — First-order dispersion (D/beta2) dominates the relative delay across carriers/wavelengths; enable higher orders by policy with explicit tags.
- P808-5 (Round-Trip Symmetry Audit) — Any one-way inference from RTT must explicitly audit epsilon_asym; never assume zero when lambda_AB ≠ lambda_BA or when devices differ by direction.
- P808-6 (Connector Equivalence) — Connectors, splices, filters, and active modules are treated here as LTI elements with tau_conn + tau_ripple(f), parameterized by calibration or S-params.
- P808-7 (Two-Form Consistency) — Compute T_form1 = ( 1 / c_ref ) * ( ∫ n_g d ell ) and T_form2 = ( ∫ ( n_g / c_ref ) d ell ) in parallel and persist delta_form.
IV. Minimal Equations S808-*
- S808-1 (Principal Group Delay, Fiber)
T_fiber(f) = ( ∫_{gamma} n_g(f,T) d ell ) / c_ref + ∑ tau_conn(f),
check_dim( T_fiber ) = "[T]". - S808-2 (Temperature Coefficient and Thermal Drift)
With T_fiber = ( n_g L ) / c_ref,
dT_fiber/dT = ( L / c_ref ) * ( dn_g/dT + n_g * alpha_L ), unit = "s/K".
For segments:
dT/dT = ( ∑ L_i * ( dn_g/dT |_i + n_g |_i * alpha_L |_i ) ) / c_ref. - S808-3 (Cable Formulation)
T_cable(f) = L / v_p(f,T) = ( L / c_ref ) * sqrt( epsilon_eff(f,T) * mu_r ),
dT_cable/dT = ( L / c_ref ) * ( 0.5 / sqrt( epsilon_eff * mu_r ) ) * d epsilon_eff/dT + ( L * alpha_L / v_p ). - S808-4 (Dispersion and Inter-Wavelength Delay)
tau_g(lambda) = ( n_g(lambda) L ) / c_ref,
D(lambda) = ( 1 / L ) * ( d tau_g / d lambda ),
relative delay for lambda_1, lambda_2:
Delta_T_CD ≈ L * ∫_{lambda_1}^{lambda_2} D(lambda) d lambda ≈ L * ( D(lambda_0) * Delta_lambda + 0.5 * S * Delta_lambda^2 ).
Relation to group-velocity dispersion:
beta2 = - ( lambda^2 / ( 2 * pi * c_ref ) ) * D. - S808-5 (First-Order PMD Model)
DGD_rms = PMD_coef * sqrt( L_km ),
equivalent delay jitter T_PMD_rms = k_p * DGD_rms (k_p ∈ [0,1] depends on polarization state and devices). - S808-6 (Connector Group Delay and Ripple)
tau_conn(f) = - d arg( H_conn(f) ) / d omega,
total connector term T_conn = ∑ tau_conn(f); with only nominal data, use equivalent length L_eq via tau_conn ≈ ( n_g * L_eq ) / c_ref. - S808-7 (Round Trip and Asymmetry)
RTT = T_AB + T_BA + T_inst, one-way expectation
T_1w ≈ ( RTT - T_inst ) / 2 - epsilon_asym, with
epsilon_asym = 0.5 * ( T_AB - T_BA ) ≈ 0.5 * ( Delta_T_CD( lambda_AB, lambda_BA ) + Delta_T_conn + Delta_T_env ). - S808-8 (Two-Form Difference)
delta_form = | ( 1 / c_ref ) * ( ∫ n_g d ell ) - ( ∫ ( n_g / c_ref ) d ell ) |, subject to contract thresholds.
V. Metrological Workflow M80-8
- Ready — Collect cable_spec, link topology, lambda_AB/BA or f_AB/BA, temperature sensing and historical OTDR/S-params; align to tau_mono.
- Geometry & Segmentation — Build segment list { L_i, class_i, install_env_i } from OTDR/as-built drawings; bind alpha_L, dn_g/dT, D(lambda), S per segment.
- Baseline — Per S808-1/3, compute T_geom = ( ∑ n_g |_i * L_i ) / c_ref (or use the cable form).
- Thermal Drift — Project temp_profile through S808-2/3 to obtain T_TCD; if missing, use T_eff with default coefficients and tag.
- Dispersion
- Single link, multi-wavelength: estimate Delta_T_CD(lambda) via S808-4, write directional fields.
- Round trip, two directions: form epsilon_asym_CD and feed one-way inference.
- PMD — From PMD_coef and L_gamma, estimate T_PMD_rms and include as a random component of u; down-weight for PM fibers appropriately.
- Connectors — From S-params/datasheets compute or table-look up tau_conn, tau_ripple; tag abnormal echoes or strong ripple.
- Two Forms & Audit — Compute T_form1, T_form2, delta_form; for RTT links compute and audit epsilon_asym.
- Persist — Emit
manifest.path.fiber = { T_fiber, parts:{ T_geom, T_TCD, T_CD, T_PMD, T_conn }, asym:{ epsilon_asym, lambda_AB, lambda_BA }, qc:{ delta_form, u }, RefCond, cable_spec.hash, tags }. - Monitor — Maintain temp_coeff_drift, cd_drift, asym_drift, and dashboard metrics.
VI. Contracts and Assertions (C80-81x)
- C80-811 Completeness — cable_spec.{ type, L_gamma, lambda or f } are mandatory; reject and fall back if missing.
- C80-812 Two-Form Difference — delta_form ≤ tol_Tarr (suggest ≤ 0.02 ns).
- C80-813 Temperature Freshness — age(temp_profile) ≤ Delta_t (suggest ≤ 5 min); otherwise use T_eff and inflate u.
- C80-814 Dispersion Guard — |Delta_T_CD| ≤ cd_guard; above the guard, apply explicit correction and inflate uncertainty.
- C80-815 Round-Trip Symmetry — If |lambda_AB - lambda_BA| ≥ 1 nm or direction-dependent devices differ, compute and persist epsilon_asym; do not zero it.
- C80-816 PMD Bound — T_PMD_rms ≤ pmd_guard; if exceeded, tag pmd_high.
- C80-817 Connector Quality — return_loss ≥ RL_min, tau_ripple_p2p ≤ ripple_max; otherwise tag conn_bad.
- C80-818 Dimensional Consistency — check_dim( T_fiber ) = "[T]", check_dim( D ) = "[T][L]^-1[Lambda]^-1".
- C80-819 Direction Consistency — One-way model lambda/f must match device configuration; otherwise tag dir_mismatch.
VII. Implementation Bindings I80-*
- I80-81 model_fiber(temp, f_or_lambda, cable_spec) -> { T_fiber, parts:{T_geom,T_TCD,T_CD,T_PMD,T_conn}, qc:{delta_form,u}, tags, meta:{RefCond,cable_spec} }
Invariants: T_fiber ≥ 0, delta_form ≤ tol_Tarr, segment list monotone. - I80-82 estimate_TCD(cable_spec, temp_profile) -> { T_TCD, coeff, u }
- I80-83 compute_CD(lambda_AB, lambda_BA, D, S, L_gamma) -> { Delta_T_CD_AB, Delta_T_CD_BA }
- I80-84 estimate_PMD(PMD_coef, L_gamma, policy) -> { T_PMD_rms, u }
- I80-85 connector_delay(Sparams_or_catalog) -> { tau_conn(f), tau_ripple, RL }
- I80-86 calibrate_roundtrip(RTT, inst_delays, asym_model) -> { T_1w, epsilon_asym }
- I80-87 emit_path_manifest_fiber(payload, policy) -> manifest.path.fiber
VIII. Cross-References
- Two-form arrival-time and numerical integration: this volume Chapter 10 and EFT.WP.Methods.Cleaning v1.0.
- Round-trip symmetry and time-base alignment: EFT.WP.Metrology.TimeBase v1.0, EFT.WP.Metrology.Sync v1.0.
- Intra-instrument delays and differential biases: EFT.WP.Metrology.Instrument v1.0.
- Multipath echoes and connector-reflection ISI: this volume Chapter 7.
IX. Quality and Risk Control
- SLO Targets — p95( |error(T_fiber)| ) ≤ 0.2 ns, p99 ≤ 0.4 ns (controlled indoor with qualified calibration); relax one tier for outdoor conduits.
- Drift Monitoring — temp_coeff_drift and cd_drift remain stable; asym_drift near zero. Anomalies trigger inspection and re-calibration.
- Fallback — If temperature profile or cable_spec is incomplete, fall back to { default TCD coeffs + nominal D + connector library values }, and widen u and guardbands.
- Audit & Traceability — Persist cable_spec.hash, params/hash, RefCond, asym.*, contracts.*, and delta_form; manage version changes per Appendix F.
Summary
This chapter delivers a unified, computable framework for group delay, thermal drift, dispersion, PMD, and connector terms on fiber/cable paths, together with explicit round-trip symmetry auditing and calibration.
Minimal key set:
manifest.path.fiber = { T_fiber, parts:{ T_geom, T_TCD, T_CD, T_PMD, T_conn }, asym:{ epsilon_asym, lambda_AB, lambda_BA }, qc:{ delta_form, u }, RefCond, cable_spec.hash, tags }.
In concert with Chapters 5, 6, 7, 10, 11, and 12, wired-link medium terms and directional errors can be compressed to system SLOs while maintaining two-form consistency and audit-ready traceability.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/