Home / Docs-Technical WhitePaper / 24-EFT.WP.Particle.TopologyAtlas v1.0
Chapter 8 — Persistent Homology and Stability
One-Sentence Goal
Establish stability conventions from filtrations to persistent-homology invariants; provide reproducible vectorizations (landscapes / images / kernel embeddings) and metrics; and ensure cross-noise / sampling consistency via parallel forms and bootstrap evaluation.
I. Scope and Objects
- Inputs
- Filtration F = { K(τ) } with homology cap k_max (see Chapter 7).
- Diagram set D = { D_k | k = 0..k_max } computed via two forms: form=bdry and form=coho/morse.
- Counterfactual / perturbed data {F'}, {D'}, noise bounds η_noise, grid step Δτ.
- Vectorization & kernel parameters: grid, σ, weight(•), dirs (collection of slicing directions).
- Outputs
- Stability metrics: d_B, d_W,p, d_I (via slicing or single-parameter approximation), ρ_rank (rank correlation).
- Vectorizations: Λ (persistence landscapes), PI_σ (persistence images), Φ_K (diagram-kernel embeddings).
- Report & manifest: manifest.topo.stability (gates, distributions, delta_form_*, signature).
- Boundaries & constraints
- Single-parameter stability requires tame f or finite complexes K; multi-parameter cases use slicing or matching-distance approximations.
- All distances/kernels must share units with the filtration scale; declare scaling/normalization strategies.
II. Terms and Variables
- Persistence diagram: D_k = { (b_i, d_i) } (b_i ≤ d_i), diagonal Δ = { (t,t) }.
- Distances: d_B(D,D') (bottleneck), d_W,p(D,D') (p-Wasserstein).
- Modules & interleavings: M_f, M_g (persistence modules), d_I(M_f,M_g) (interleaving distance).
- Landscapes: Λ = { λ_r(t) }_{r≥1}; images: PI_σ(u,v) on (birth, persistence) grids.
- Kernel embeddings: Φ_K(D), common K ∈ { PSSK, SWK }.
- Two-form discrepancies: delta_form_PH (diagram-computation routes), delta_form_vec (landscape/image alignment).
- Statistics: u(x), U = k * u_c, nu_eff, bootstrap size B.
III. Axioms P908-*
- P908-1 (Tameness/finite) — F arises from finite complexes with monotone grade(σ) or from tame/PL functions; each D_k is locally finite.
- P908-2 (Comparable settings) — Cross-dataset comparisons require consistent type / metric / coeff-field / k_max / grade.policy; otherwise comparisons are invalid.
- P908-3 (Parallel two forms) — Compute D via boundary and cohomology/Morse routes and record delta_form_PH.
- P908-4 (Scale declaration) — Every distance or kernel declares unit(τ) and scale_τ; hidden unit changes are forbidden.
- P908-5 (Reproducible vectorization) — Fix and persist grid / σ / weight / dirs, plus interpolation/discretization policies; seed any randomness.
- P908-6 (Stability assessment) — With B ≥ 20 bootstrap/perturbation samples, estimate distributions and confidence; publish p95 and U.
- P908-7 (Slicing sufficiency) — For multi-parameter filtrations, use at least |dirs| ≥ 32 uniform directions to approximate matching/interleaving distances and annotate the error model.
IV. Minimal Equations S908-*
- Single-parameter stability and interleavings
- S908-1 (Bottleneck stability): for tame f,g,
d_B( D(f), D(g) ) ≤ ( ∥ f − g ∥_∞ ). - S908-2 (Interleaving distance):
d_I(M_f, M_g) = inf { ε | M_f, M_g are ε-interleaved }, and for single-parameter cases,
d_B( D(f), D(g) ) = d_I(M_f, M_g).
- Diagram distances
- S908-3 (bottleneck):
d_B(D,D') = inf_{γ} ( sup_{x∈D} ( ∥ x − γ(x) ∥_∞ ) ), allowing matches to Δ. - S908-4 (p-Wasserstein):
d_W,p(D,D') = ( inf_{γ} ( Σ_{x∈D} ∥ x − γ(x) ∥_∞^p ) )^{1/p}.
- Landscapes and images
- S908-5 (landscape): for each (b,d), define λ_{(b,d)}(t) = max( 0, min(t−b, d−t) ); then λ_r(t) is the r-th largest over all pairs, assembling Λ = { λ_r }.
- S908-6 (image): with transform ψ: (b,d) → (u=b, v=d−b), weights w(u,v), kernel ρ_σ,
( PI_σ )(ξ) = ( Σ_{p∈D} w(ψ(p)) * ρ_σ( ξ − ψ(p) ) ), with grid center ξ.
- Kernel embeddings & similarity
- S908-7 (PSSK example): view diagrams as signed measures; diffuse by a heat kernel to time σ^2 and take the L_2 inner product:
K_{PSS}(D,D'; σ) = ⟨ Φ_{σ}(D), Φ_{σ}(D') ⟩_{L_2}. - S908-8 (Sliced-Wasserstein kernel):
K_{SW}(D,D') = exp( − ( ( 1/|dirs| ) * Σ_{θ∈dirs} W_2^2( π_θ D, π_θ D' ) ) / (2σ^2) ).
- Vectorization stability (Lipschitz-type)
- S908-9: there exist constants L_Λ, L_PI such that
∥ Λ(D) − Λ(D') ∥_{L_q} ≤ L_Λ * d_B(D,D'),
∥ PI_σ(D) − PI_σ(D') ∥_{L_1} ≤ L_PI(σ,weight) * d_B(D,D').
- Two-form discrepancies and alignment
- S908-10: delta_form_PH = dist_intervals( D_bdry , D_coho );
delta_form_vec = ( ∥ Λ(D_bdry) − Λ(D_coho) ∥_{L_2(grid)} + ∥ PI_σ(D_bdry) − PI_σ(D_coho) \|_{L_1} ) / 2.
- Multi-parameter approximations
- S908-11: matching-distance proxy
d_match(D, D') ≈ max_{θ∈dirs} ( d_B( π_θ D , π_θ D' ) );
sliced interleaving
d_I^{slice}(M,N) = max_{θ∈dirs} d_I( M_θ, N_θ ).
V. Metrology Workflow M90-8
- Ready: choose k_max, form ∈ { bdry, coho/morse }, p ∈ {1,2}, dirs, σ / grid / weight; set bootstrap B and gates tol_*.
- Diagram computation (two forms): from F, compute D_bdry, D_coho, and delta_form_PH; if over-threshold, revisit Chapter 7 construction.
- Distance evaluation:
- Compute d_B, d_W,p (single-parameter).
- For multi-parameter, slice to obtain d_match, d_I^{slice}.
- Vectorization: build Λ and PI_σ; produce Φ_K (K ∈ { PSSK, SWK }); compute delta_form_vec and ρ_rank (rank correlation with d_B).
- Stability estimation:
- Generate { D^{(b)} }_{b=1..B} via bootstrap/perturb;
- Summarize distributions of d_B(D, D^{(b)}) and vectorization gaps; report u/U and p95.
- Consistency & gates: enforce d_B ≤ η_noise + tol_stab, delta_form_PH ≤ tol_PH, delta_form_vec ≤ tol_vec, ρ_rank ≥ ρ_min.
- Persist:
manifest.topo.stability = { k_max, forms, dists, kernels, Λ, PI_σ, delta_form_PH, delta_form_vec, dirs, B, p95, U, params, algo.ver, seed }, with signature.
VI. Contracts & Assertions C90-81x (suggested thresholds)
- C90-8101 Comparable computation: type / metric / coeff-field / k_max / grade.policy must match exactly to compare.
- C90-8102 Diagram validity: ∀(b,d)∈D, b ≤ d; diagonal pairing sufficient; |D| < ∞.
- C90-8103 Bottleneck stability: with declared η_noise, require d_B_p95 ≤ η_noise + tol_stab (suggest tol_stab = 0.05 * scale_τ).
- C90-8104 Two-form coherence: delta_form_PH_p95 ≤ tol_PH (suggest tol_PH = 1e-3 for Z_2).
- C90-8105 Vectorization coherence: delta_form_vec_p95 ≤ tol_vec (suggest tol_vec = 0.02 * scale_Λ); ρ_rank ≥ 0.9.
- C90-8106 Slicing coverage: |dirs| ≥ 32 and uniform; if not, tag slice.sparse=true and inflate U.
- C90-8107 Resources & reproducibility: quota overruns trigger fallbacks; persist seed and grid/hash.
- C90-8108 Units/dimensions: check_dim(d_B) = unit(τ); check_dim(Λ, PI, Φ_K) = "[1]".
VII. Implementation Bindings I90-8*
- I90-81 persistence_diagram(F, k_max, form) -> D
- I90-82 bottleneck_distance(D1, D2) -> d_B
- I90-83 wasserstein_distance(D1, D2, p) -> d_Wp
- I90-84 interleaving_distance_sliced(F1, F2, dirs) -> d_I_slice
- I90-85 persistence_landscape(D, grid?) -> Λ
- I90-86 persistence_image(D, grid, σ, weight) -> PI_σ
- I90-87 diagram_kernel(D1, D2, kind, params) -> K_val
- I90-88 bootstrap_stability(D, B, noise_policy) -> { dist_stats, u/U }
- I90-89 compare_vectorizations(Λ, PI_σ) -> { delta_form_vec, ρ_rank }
- I90-8A assert_stability_contracts(results, rules) -> report
- I90-8B emit_stability_manifest(results, policy) -> manifest.topo.stability
Invariants: non_decreasing(τ); delta_form_PH ≤ tol_PH; seeds/params persisted; all check_dim pass.
VIII. Cross-References
- Complexes & filtrations: Chapter 7 (K(τ), grade).
- Worldlines/events: Chapters 5–6 (stability thresholds inform event robustness).
- Atlas stitching & transition harmonization: Chapter 9 (cross-domain stability & shared gates).
- Query & indexing: Chapter 10 (landscape/image/kernel indexing & retrieval).
- Runtime & dashboards: Chapter 14; manifest keys: Appendix C; error propagation: Appendix E.
IX. Quality & Risk Control
- SLOs: d_B success ≥ 99.5%; delta_form_PH_p95 ≤ tol_PH; ρ_rank ≥ 0.9; bootstrap B completion rate 100%.
- Fallback path: full diagrams → sliced-matching → H0-only (MST diffs) → thresholded features, inflating U and tagging fallback.stage progressively.
- Audit: persist optimal matchings γ*, weights paired to the diagonal, slicing directions, kernel/landscape/image parameters, random seeds, and resource traces—with signatures & hashes.
Summary
This chapter provides the engineering convention for persistence stability as P908 / S908 / M90-8 / C90-81x / I90-8*. With parallel-form computation, dual stability checks (distances & vectorizations), and bootstrap reports, persistent features remain reproducible and auditable under noise and sampling perturbations; results are published uniformly as manifest.topo.stability.*.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/