Home / Docs-Technical WhitePaper / 25-EFT.WP.STG.Dynamics v1.0
Chapter 6 — Transport and Conservation Laws (Network Flow / Continuity)
One-Sentence Goal
On G = (V, E), establish a unified treatment of transport and continuity for conserved quantities (network flow / advection–diffusion / electro–hydraulic analogies), with computable and auditable continuous–discrete dual forms and enforceable contracts.
I. Scope and Objects
- Objects
- Conserved quantities: node density/inventory ρ(t) ∈ R^N, edge flux f(t) ∈ R^{|E|}, global amount Q(t) = ( Σ ρ ).
- Drivers: sources–sinks s(t) ∈ R^N, potential φ(t) ∈ R^N, edge velocities v ∈ R^{|E|}, diffusion coefficients D ∈ R^{|E|}_{≥0}, capacities c ∈ R^{|E|}_{>0}.
- Boundary conditions: Dirichlet / Neumann / Robin (node potential / flux / mixed), queueing / travel-time edges.
- Inputs & outputs
- Inputs: G, B, A, L, and { s, φ / v / D / c }, initial condition ρ(0), and boundary specs.
- Outputs: { ρ(t_k), f(t_k) }, mass-balance reports, delta_form_cons, and contract pass rates.
- Constraints
- Explicit units: unit(ρ), unit(f) = unit(ρ)/[T], unit(s) = unit(ρ)/[T]; check_dim must pass.
- Nonnegativity & capacity: ρ ≥ 0, | f_e | ≤ c_e if capacities are declared.
II. Terms and Variables
- Graph operators & geometry: incidence B ∈ R^{N×|E|} (column direction tail→head), graph gradient grad_G x = B^T x, divergence div_G f = B f, Laplacian L = B W B^T (W = diag(w_e)).
- Fields & parameters: ρ, f, φ, v, D, c; edge averages ρ̂ = edge_avg(ρ, method).
- Timebase & dimensions: settle on tau_mono, publish at ts; dual-form gap delta_form_cons.
- Optional: edge storage/inventory w_e(t) (pipelines / queues).
III. Axioms P706-*
- P706-1 (Continuity): for any subset S ⊆ V,
d/dt ( Σ_{i∈S} ρ_i ) = Σ_{i∈S} s_i − Σ_{∂S} n•f; discretely dρ/dt = s − B f. - P706-2 (Orientation & sign): column directions of B define positive flux; f_e > 0 points tail→head; persist orient.hash.
- P706-3 (Parallel dual forms): compute continuous-time integration and discrete updates in parallel and record discrepancies.
- P706-4 (Explicit measures): temporal integrals ( ∫_{t_k}^{t_{k+1}} • dτ ), spectral/edge sums ( Σ_{e∈E} • ) must be explicit.
- P706-5 (Nonnegativity & capacity): if ρ is a physical inventory, enforce ρ ≥ 0 and |f_e| ≤ c_e (or publish over-capacity handling).
- P706-6 (Units/dimensions): all fields entering equations declare unit(field) and dim(field) and pass check_dim( y − f(x) ).
IV. Minimal Equations S706-*
- S706-1 (Graph continuity):
dρ/dt = s(t) − B f(t), with unit(dρ/dt) = unit(ρ)/[T]. - S706-2 (Constitutive law: potential-driven / Ohm–Darcy):
f = − K ⊙ ( B^T φ ), where K = diag(k_e), k_e ≥ 0; equivalently B f = − L_K φ, L_K = B K B^T. - S706-3 (Constitutive law: advection–diffusion):
f = v ⊙ ρ̂ − D ⊙ ( B^T ρ ), where ρ̂ = edge_avg(ρ) (upwind/central, etc.). - S706-4 (Capacity & projection):
| f_e | ≤ c_e; numerically f_proj = clip(f, −c, c) or solve min_g || g − f ||_2 s.t. | g | ≤ c. - S706-5 (Global conservation):
with no boundary leakage and w ≡ 0, d/dt ( 1^T ρ ) = 1^T s;
with edge storage w, d/dt ( 1^T ρ + 1^T w ) = 1^T s + boundary_flux. - S706-6 (Discrete upwind / Godunov):
ρ_{k+1} = ρ_k + Δt ( s_k − B f_up(ρ_k) ), CFL = max_e( | v_e | Δt / ℓ_e ) ≤ 1 (ℓ_e effective edge length; default 1). - S706-7 (Semi-implicit diffusion):
ρ_{k+1} = ρ_k + Δt ( s_k − B ( v ⊙ ρ̂_k ) ) + Δt ( B D B^T ) ρ_{k+1}. - S706-8 (Dual-form gap):
delta_form_cons = || ( ρ_{k+1} − ρ_k ) − ( ∫_{t_k}^{t_{k+1}} ( s − B f ) dτ ) ||_2. - S706-9 (Network-flow optimization, optional):
Static: min_f cost(f) s.t. B f + r = s, 0 ≤ f ≤ c;
Dynamic: add time and inventories ρ, decoupling into sequential linear/convex programs.
V. Metrology Workflow M7-6 (Ready → Model/Estimate → Check → Persist)
- Ready
- Build B / Orient, declare units and RefCond; align time windows of { s, φ / v / D / c }.
- Compute spectral/CFL references: λ_max(L_D), max | v_e |, ℓ_e.
- Model / Estimate
- Choose constitutive laws: { potential-driven, advection–diffusion, queue/travel-time }.
- Estimate parameters { K or v / D }, edge-averaging policy and discretization { Euler, upwind, semi-implicit }; decide on capacity projection/optimization.
- Checks
- Mass balance: mb = ( ρ_{k+1} − ρ_k ) − Δt ( s_k − B f_k ); compute norms and percentiles.
- Nonnegativity & capacity: min(ρ), viol_rate( |f| > c ).
- Stability: CFL ≤ 1 or semi-implicit monotonicity evidence.
- Dual forms: percentile of delta_form_cons.
- Boundary: reconcile boundary flux and internal generation.
- Persist / Publish
manifest.stg.flow = { model, scheme, Δt, CFL, params: { K|v|D|c }, edge_avg, capacity_proj, mb_p95, neg_ρ_rate, cap_viol_rate, delta_form_p95, RefCond, method.hash }.
VI. Contracts & Assertions C70-6xx
- C70-601 (Mass balance): p95( || mb ||_1 / ( || ρ_{k+1} − ρ_k ||_1 + ε ) ) ≤ 1e−3.
- C70-602 (Nonnegativity): min(ρ) ≥ − ε_neg (suggest ε_neg = 1e−9 • scale(ρ)), with neg_ρ_rate = 0.
- C70-603 (Capacity compliance): cap_viol_rate ≤ 1e−4 or max_excess ≤ 1e−6 • median(c).
- C70-604 (Stability / CFL): explicit advection requires CFL ≤ 1; semi-implicit must show energy/residual monotonicity.
- C70-605 (Dual-form gate): delta_form_cons_p95 ≤ tol_cons (suggest tol_cons = 1e−3 • || ρ ||_1).
- C70-606 (Unit consistency): check_dim( dρ/dt − s + B f ) = "[0]" must pass.
- C70-607 (FIFO / travel-time, optional): queue edges satisfy FIFO and monotone travel time dτ/dt ≥ 0.
VII. Implementation Bindings I70-6*
- I70-61 build_incidence(G, orient) -> B
- I70-62 edge_avg(ρ, method) -> ρ̂ (method ∈ { upwind, central, arithmetic })
- I70-63 constitutive_flow(model, ρ, φ, v, D, K, params) -> f
- I70-64 advance_conservation(ρ, s, f, Δt, scheme) -> ρ_next (scheme ∈ { Euler, upwind, semi-implicit })
- I70-65 godunov_flux(ρ_left, ρ_right, v, F) -> f (F is the fundamental diagram / flux function)
- I70-66 project_capacity(f, c, mode) -> f_proj (mode ∈ { clip, qp })
- I70-67 mass_balance_report(ρ_k, ρ_k1, s_k, f_k, Δt, boundary) -> report
- I70-68 estimate_transport_params(data, G, model) -> { K|v|D|c }
- I70-69 check_flow_contracts(ds, rules) -> report
Invariants: non_decreasing(time); ρ ≥ − ε_neg; | f | ≤ c (if declared); check_dim passes; delta_form_cons ≤ tol_cons; methods/params/RefCond are traceable.
VIII. Cross-References
- Graph operators & spectra: Ch. 2; kernels & diffusion energy: Ch. 4.
- State/observation/noise & masks: Ch. 3 (for estimating s and boundaries).
- Coupling/synchronization and balancing conserved quantities: Ch. 5.
- Numerical stability & step strategies: Ch. 9; runtime panels & manifests: Ch. 14 & Appendix C.
- Physical-dimension and dual-form philosophy for arrival times: EFT.WP.Metrology.PathCorrection v1.0, Chs. 10/11.
IX. Quality & Risk Control
- SLIs/SLOs: mb_p95, delta_form_cons_p95, neg_ρ_rate, cap_viol_rate, CFL_max, runtime_per_step.
- Fallbacks: CFL > 1 → reduce Δt / switch to semi-implicit; ρ < 0 → upwind/limiters or capacity projection; frequent capacity violations → increase c or reroute/solve an optimization; mass-balance mismatch → audit boundaries/sources and B orientation.
- Audit: persist orient.hash, B.hash, parameter hashes & estimation evidence, contract pass rates, and slices of anomalous windows.
Summary
This chapter establishes a unified, computable framework for transport and conservation on networks: the continuity law dρ/dt = s − B f, constitutive laws, capacity/stability conditions, dual-form comparisons, and contracts. Key outputs: manifest.stg.flow.* (model/scheme/params/CFL/mass balance/dual-form gap/compliance modules) to support downstream identification, control, and runtime publication.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/