Home / Docs-Technical WhitePaper / 25-EFT.WP.STG.Dynamics v1.0
Appendix E — Error and Uncertainty Propagation (Dynamics Edition)
One-sentence goal: Establish, for STG dynamics, a unified methodology that decomposes error sources from graph structure/operators through propagation/assimilation, runs Linearized Propagation of Uncertainty (LPU) and Monte Carlo (MC) in parallel for cross-checking, and produces guardbands and compliant persisted artifacts.
I. Scope and Objects
- Objects: graph(V, E), L/A/H, kernel K = g(L), continuous/discrete dynamics f(x, θ, Δt), numerical integration & approximations, assimilation (KF/UKF/PF), uncertainty composition and guardbanding.
- Inputs: RefCond, units.*, baseline.metrics, graph/L/H/K.hash, solver/meta, noise priors Q/R, parameter prior θ ~ N(θ0, Σ_θ).
- Outputs: uncertainty.* ( u_num, u_model, u_c, g, nu_eff, α ), dual-form gap delta_form_unc, verification report and signature.
- Boundary: H may be time-varying; L may be symmetric positive semidefinite (undirected) or general (directed); process stationarity is declared via RefCond.
II. Terms and Variables
- Dynamics: x_{k+1} = f(x_k, θ, Δt) + w_k, y_k = h(x_k) + v_k; linearization F_k = ( ∂f / ∂x )|_{x̂_k}, H_k = ( ∂h / ∂x )|_{x̂_k}.
- Graph operators & kernel: L, A, H (observation matrix), K = g(L), spectral decomposition L = U Λ U^T.
- Error components: u_num (numerical integration/approximation), u_model (model structure/parameters), u_obs (observation noise), u_proc (process noise), u_init (initial condition).
- Covariances & propagation: P_k, Q_k, R_k, Σ_θ, J_* (Jacobians), ⊕ (covariance composition).
- Coverage & guardband: u_c (combined standard uncertainty), g = k * u_c, α (tail probability), nu_eff (effective degrees of freedom).
- Dual-form gap: delta_form_unc = | u_c^{LPU} - u_c^{MC} |.
III. Postulates P70E-*
- P70E-1: Error decomposition follows an additive approximation: u_total^2 ≈ u_proc^2 ⊕ u_obs^2 ⊕ u_model^2 ⊕ u_num^2 ⊕ u_init^2; sources and estimation methods must be persisted.
- P70E-2: LPU and MC run in parallel; record delta_form_unc and enforce contractual thresholds.
- P70E-3: All matrix-valued quantities must declare unit(field) and dim(field) and pass check_dim.
- P70E-4: If L is orthogonally diagonalizable, prefer spectral-domain bounds to derive kernel approximation and propagation upper limits.
- P70E-5: Numerical integration error must expose an auditable upper bound via local truncation error (LTE) and a stepsize controller.
IV. Minimal Equations S70E-*
- Continuous → discrete (linear approximation): ẋ = A x + B u + w_c, F = exp( Δt A ), Q_d = ∫_0^{Δt} exp(τ A) Q_c exp(τ A)^T dτ.
- Nonlinear linearized propagation: P_{k+1|k} = F_k P_{k|k} F_k^T + Q_k + U_num,k + U_model,k.
- Measurement update (KF/UKF): S_k = H_k P_{k+1|k} H_k^T + R_k, K_k = P_{k+1|k} H_k^T S_k^{-1}, P_{k+1|k+1} = (I - K_k H_k) P_{k+1|k}.
- Kernel approximation error (spectral, symmetric L): with K = U g(Λ) U^T, K_approx = U g_m(Λ) U^T,
ε_approx = ( || g(Λ) - g_m(Λ) ||_2 / || g(Λ) ||_2 ),
U_kern ≈ ε_approx^2 * K P_k K^T (first-order bound). - Numerical integration error (order p, step Δt): ||e_{LTE}||_2 = O( Δt^{p+1} ),
U_num ≈ J_f Σ_num J_f^T, Σ_num = σ_num^2 I, σ_num ∝ Δt^{p+1} (stepsize controller back-fills the constant). - Parameter-uncertainty propagation: U_model ≈ J_θ Σ_θ J_θ^T, J_θ = ( ∂f / ∂θ )|_{x̂, θ }.
- Combined standard uncertainty: u_c = sqrt( tr( W P_out W^T ) ) ( W maps to the quantity of interest ); g = k * u_c (k determined by α, nu_eff).
- Welch–Satterthwaite: nu_eff ≈ ( ∑ w_i u_i^2 )^2 / ∑ ( w_i^2 u_i^4 / ν_i ) (approximate dof composition across components).
- Dual-form gap: delta_form_unc = | u_c^{LPU} - u_c^{MC} |.
V. Metrology Pipeline M70-5 (Ready → Decompose → Propagate → Verify → Persist)
- Ready: load RefCond/units.*, graph/L/H/K.hash, solver/meta, Q/R/Σ_θ/x0/P0; determine the mapping W for the quantity of interest.
- Decompose: tag error sources proc/obs/model/num/init; set MC sample size N_mc and step-size strategy.
- Propagate (parallel):
- LPU: build F_k, H_k, J_f, J_θ; advance P per S70E-*, accumulate U_num, U_model;
- MC: sample {w_k, v_k, θ} with the stepper to obtain output sample variance u_c^{MC}.
- Verify: compute delta_form_unc, coverage, nu_eff; enforce contracts C70E-*; on failure, generate an audit bundle.
- Persist: write uncertainty.*, component shares, test statistics and signature; synchronize the dashboard.
VI. Contracts & Assertions C70E-* (threshold guidelines)
- C70E-01: coverage ≥ 1 - α - ε_cov (estimated via replay or MC).
- C70E-02: delta_form_unc ≤ tol_unc (recommend ≤ 0.15 * u_c).
- C70E-03: ε_approx ≤ ε_cap (kernel approximation), σ_num ≤ σ_cap(Δt, p) (integrator).
- C70E-04: P is positive definite and cond(P) ≤ κ_cap.
- C70E-05: Spectral stability: ρ(F) < 1 (discrete) or max Re(eig(A)) < 0 (continuous).
- C70E-06: Unit/dimension checks pass: check_dim(P) = "[x]^2", check_dim(g) = unit(W x).
VII. Implementation Bindings I70-* (interface prototypes & invariants)
- linearize_dynamics(f, x_hat, θ, Δt) -> { F, J_f }
- propagate_cov(P, F, Q, U_num, U_model) -> P_next
- estimate_num_uncertainty(stepper_state, order_p, Δt) -> U_num
- estimate_kernel_uncertainty(L, g, g_m, P) -> U_kern, ε_approx
- propagate_param_uncertainty(J_θ, Σ_θ) -> U_model
- uncertainty_to_guardband(P, W, k, α) -> { u_c, g, nu_eff }
- mc_propagate(stepper, priors, N) -> { u_c_MC, samples_digest }
- assert_uncertainty_contracts(stats, rules) -> report
Invariants: non_decreasing(wm); inputs are hashable and traceable to RefCond; P ≻ 0; on numerical failure, return tagged NaN and block publication.
VIII. Cross-References
- Numerical integration & stability bounds: see Chapter 9.
- Assimilation consistency & residual statistics: see Chapter 12.
- Uncertainty metrics & guardband dashboard: see Chapter 13 and Appendix D.
- Manifest embedding & signatures: see Appendix C.
IX. Quality & Risk Control
- SLO: uncertainty.pipeline.latency_p95 ≤ B_mod; adapt MC budget N_mc until se(u_c^MC) ≤ r_mc * u_c.
- Fallback strategies: if ε_approx exceeds limits → raise approximation order or switch to exact spectral; if σ_num exceeds limits → reduce Δt or switch to a stiff integrator; if delta_form_unc exceeds limits → increase MC samples or re-center the linearization point.
- Audit & reproducibility: persist jacobians.hash, samples.digest, lte.trace, spectral.bounds, and rules.version.
Summary
- This appendix establishes a unified STG dynamics framework for error decomposition and propagation: parallel LPU and MC, explicit kernel and integrator errors, matrix-form parameter uncertainty, and publication of guardbands g = k * u_c.
- Deliverables are written to uncertainty.* and contracts.report, serving runtime monitoring, comparison, and compliance modules.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/