HomeDocs-Technical WhitePaper26-EFT.WP.STG.Lensing v1.0

Chapter 3 — Lens Primitives & Operator Families (Node / Edge / Path / Subgraph)


One-sentence goal: Define four lens primitives (node, edge, path, subgraph) and a composable operator family Φ_lens; provide minimal equations for both spectral and variational forms with implementation bindings, enabling subsequent composition, inversion, and streaming deployment.


I. Scope & Objects

  1. Inputs
    • Graph & operators: G = (V, E, w), adjacency A, degree D, Laplacian L (type & scaling fixed in RefCond).
    • Runtime signal: x_in ∈ R^{|V|}; optional observation y = H x_true + v.
    • Primitive parameters: node weights w_node(v), edge gates m_ij, path set Π = { π_k }, subgraph set S ⊆ V.
    • Mode & window: mode ∈ { offline, streaming }, win = { Δt_win, Δt_slide }.
  2. Outputs
    • Primitive lenses Φ_node, Φ_edge, Φ_path, Φ_subgraph, and their composition Φ_* = Φ_N ∘ Φ_E ∘ Φ_P ∘ Φ_S.
    • Lensed result x' = Φ_* ( x_in ) and the dual-form gap delta_form_lens (exact spectral vs approximation / offline vs streaming).
  3. Boundary
    No change of dimensions: unit(x') = unit(x_in); physical propagation delays are out of scope (see …PathCorrection v1.0).

II. Terms & Variables


III. Postulates P713-*


IV. Minimal Equations S713-*

  1. S713-1 (Node lens)
    • Spectral: Φ_node(x) = W_node x, with W_node = diag( w_node(v) ).
    • Variational: x' = argmin_x ( (1/2) || x − x_in ||_2^2 + (β/2) || (I − W_node) x ||_2^2 ).
  2. S713-2 (Edge lens — weight re-calibration)
    • Reweighting: A' = A ⊙ M, D'_{ii} = ∑_j A'_{ij}, L' = D' − A'.
    • Spectral / diffusion: x' = K_edge x_in = (I + β L')^{−1} x_in or x' = exp(−τ L') x_in.
    • Variational: x' = argmin_x ( (1/2) || x − x_in ||_2^2 + (β/2) x^T L' x ).
  3. S713-3 (Path lens — along-path anisotropy)
    • Anisotropic Laplacian: L_ani = B^T C_ani B, with
      C_ani(e) = c_∥ if edge e aligns with the tangent estimate t_hat of Π, otherwise C_ani(e) = c_⊥, and c_∥ ≥ c_⊥ ≥ 0.
    • Spectral: x' = K_path x_in = exp(−τ L_ani) x_in or x' = ( I + β L_ani )^{−1} x_in.
    • Variational: x' = argmin_x ( (1/2) || H x − y ||_2^2 + (β/2) x^T L_ani x ).
  4. S713-4 (Subgraph lens — local with boundary conditions)
    • Dirichlet style: fix x_{V\setminus S} = x_in and solve
      x'_S = ( I + β L_{SS} )^{−1} ( x_in )_S − β ( I + β L_{SS} )^{−1} L_{S,~S} ( x_in )_{~S};
      assemble x' by splicing.
    • Projection kernel: K_sub = ( I + β P_S L P_S )^{−1}, x' = K_sub x_in.
  5. S713-5 (Composition & dual-form gap)
    • Composite kernel: K_* = K_node K_edge K_path K_sub (ordered by implementation), x'_spec = K_* x_in.
    • Gap: delta_form_lens = || x'_spec − x'_var ||_2, or the streaming-window version
      delta_form_stream = ( ∑_{t∈win} w_t || • ||_2^2 )^{1/2} .
  6. S713-6 (Stability & spectral bounds)
    • If each K_i is diagonalizable in the same U, then ρ(K_*) ≤ ∏_i ρ(K_i); diffusion/Tikhonov types satisfy ρ(K_i) ≤ 1.
    • Subgraph leakage bound:
      leak = || x'_{~S} − x_in_{~S} ||_2 ≤ β || L_{~S,S} ||_2 || ( I + β L_{SS} )^{−1} ||_2 || x_in ||_2.

V. Metrology Pipeline M71-3 (Primitive Selection → Assembly → Verification → Persist)

  1. Select primitives & parameters: choose among node/edge/path/subgraph and their order; set θ = { w_node, M, Π, S, β, τ }; lock RefCond.
  2. Build operators: produce W_node, L', L_ani, K_sub; if dependent on π_view / vis, inject visibility weights (see Chapter 2).
  3. Solve in dual forms:
    • Spectral: compute x'_spec via exact spectra or Chebyshev approximation;
    • Variational: solve by primal–dual / ADMM to obtain x'_var.
  4. Checks & stability: evaluate ρ(K_i) and ρ(K_*), leak, delta_form_lens, || y − H x' ||_2; propagate u_c and guardband U.
  5. Persist & publish: record in manifest.lens: Φ.hash, θ, impl, spectral_bounds, delta_form_lens, contracts.*, signature.

VI. Contracts & Assertions C71-3x (suggested thresholds)


VII. Implementation Bindings I71-3* (interfaces, I/O, invariants)


VIII. Cross-References


IX. Quality & Risk Control


Summary


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/