Home / Docs-Technical WhitePaper / 26-EFT.WP.STG.Lensing v1.0
Chapter 7 — De-Lensing and Inversion (Deconvolution / Regularization / Sparsity)
One-sentence goal: Provide robust inversion for blur/occlusion effects induced by lens operators through parallel spectral–variational formulations—combining deconvolution, regularization, and sparsity—with executable guidance for parameter selection, numerical stability, and contract auditing.
I. Scope & Objects
- Inputs
- Graph & operators: G = (V, E, w); L_* ∈ { L, L^vis, L_ani } (see Chapters 4/5), with unit(L_*) = 1, dim(L_*) = [1].
- Lens kernel: K = g(L_*), or parameterized g(λ; θ) (focus/defocus/anisotropy, see Chapter 5).
- Observations: y = K x_true + v (default v ~ N(0, σ^2 I); switchable to Poisson/Laplace).
- Priors & operators: analysis operators Ψ ∈ { B, L_*^{p/2}, W_wavelet, D_P^T }; synthesis dictionary D (incl. path dictionaries; see Chapter 6).
- Outputs
- Inversion estimate: x_hat; optionally kernel parameters θ_hat (semi-blind/blind inversion).
- Dual-form gap: delta_form_inv = || x_spec_inv − x_var ||_2.
- Quality & uncertainty: res = || K x_hat − y ||_2, u_c(x_hat), cond(K).
- Boundary
unit(x_hat) = unit(y); if visibility/anisotropy is enabled, define on L_* and persist hash(*).
II. Terms & Variables
- Spectral inverse kernel: g_inv(λ; μ, r) = g(λ) / ( g(λ)^2 + μ r(λ) ), with r(λ) ∈ { 1, λ^p }.
- Variational objective: J(x) = (1/2) || Kx − y ||_2^2 + μ R(x), with
R(x) ∈ { (1/2) || L_*^{p/2} x ||_2^2, || Ψ x ||_1, ElasticNet }. - Sparsity formulations
- Analysis: min_x (1/2) || Kx − y ||_2^2 + λ || Ψ x ||_1.
- Synthesis: min_α (1/2) || K D α − y ||_2^2 + λ || α ||_1, with x = D α.
- Noise-robust losses: ρ_δ(•) is Huber, or D_KL(y || Kx) for Poisson.
- Algorithms: CG/PCG (quadratic), FISTA/ADMM/PDHG (non-smooth); Chebyshev approximations for matrix–vector products with K, K^T.
III. Postulates P717-*
- P717-1 (Parallel dual forms): Every inversion must produce both the spectral form x_spec_inv and the variational form x_var, logging delta_form_inv.
- P717-2 (Stable regularization): g_inv(λ; μ, r) must be bounded and monotone in μ; recommend μ > 0 and r(λ) ≥ 0.
- P717-3 (Operator traceability): For K = g(L_*), persist kind / θ / hash / λ_max / order; record visibility/anisotropy choices.
- P717-4 (Noise matching): The data-fidelity loss must match the noise model, with declared unit(y) and dim(y).
- P717-5 (Safe step sizes): First-order methods satisfy σ τ ≤ 1 / ||A||^2, where A is the KKT linear operator.
- P717-6 (Explicit path measure): When using path sparsity or TV, write ( ∫_{gamma(ell)} • d ell ) with explicit L_gamma.
IV. Minimal Equations S717-*
- S717-1 (Spectral de-lensing: unified Wiener/Tikhonov)
- Spectral form: x_spec_inv = ( U g_inv(Λ; μ, r) U^T ) y, with L_* = U Λ U^T.
- Typical choices: r(λ) = 1 (zeroth-order), r(λ) = λ^p (p ∈ {1, 2}) for smoothness/curvature.
- S717-2 (Quadratic variational equivalence)
x_var = argmin_x ( (1/2) || Kx − y ||_2^2 + (μ/2) x^T L_*^p x ), yielding
x_var = ( K^T K + μ L_*^p )^{−1} K^T y, equivalent to x_spec_inv when co-diagonalizable. - S717-3 (ℓ1-sparse inversion: analysis/synthesis)
- Analysis: x_var = argmin_x ( (1/2) || Kx − y ||_2^2 + λ || Ψ x ||_1 );
prox_{λ||Ψ•||_1}(z) realized via soft-thresholding in the Ψ domain. - Synthesis: α_hat = argmin_α ( (1/2) || K D α − y ||_2^2 + λ || α ||_1 ), x_var = D α_hat.
Equivalence condition: if D is complete/orthogonal and Ψ = D^T, the two are equivalent.
- Analysis: x_var = argmin_x ( (1/2) || Kx − y ||_2^2 + λ || Ψ x ||_1 );
- S717-4 (Robust/Poisson data terms)
- Huber: min_x ∑_i ρ_δ( (Kx − y)_i ) + μ R(x);
- Poisson: min_x D_KL(y || Kx) + μ R(x), D_KL(a||b) = ∑ ( a log(a/b) − a + b ).
- S717-5 (Semi-blind kernel estimation)
- min_{x, θ∈Θ} (1/2) || U g(Λ; θ) U^T x − y ||_2^2 + μ R(x) + γ R_θ(θ);
- First-order condition: ∂/∂θ J = (∂g/∂θ)(Λ)^T ⊙ diag( U^T x, U^T r ) + γ ∂R_θ, with r = Kx − y.
- S717-6 (Dual-form gap & conservation)
- delta_form_inv = || x_spec_inv − x_var ||_2;
- Energy control: E_out = || x_hat ||_2^2 ≤ (1 + ε) || y ||_2^2 (deconvolution overshoot suppression).
V. Metrology Pipeline M71-7 (Ready → Model → Solve → Verify → Persist)
- Ready: fix K = g(L_*), noise model, prior R, and the pathway (analysis/synthesis); declare RefCond = { L_type, vis/ani, λ_max, order }.
- Spectral design: select g_inv(λ; μ, r) based on R; for semi-blind, initialize θ and constraint set Θ.
- Approximations & operators: implement matvec for K, K^T, g_inv(L_*) via Chebyshev/Lanczos; build Ψ / D.
- Solve in dual forms:
- Spectral: x_spec_inv ← g_inv(L_*) y;
- Variational: use PCG for quadratic, FISTA/ADMM/PDHG for L1/TV, until res or relative change converges.
- Parameter selection: choose μ / λ via discrepancy (target res ≈ κ σ √|V|), L-curve, or GCV; alternate (x, θ) for semi-blind.
- Checks: evaluate delta_form_inv, cond(K^T K + μ L_*^p), E_out, robust-loss descent rate, and u_c(x_hat).
- Persist:
manifest.lens.inverse.* = { kernel.hash, kind, θ, μ, λ, prior, solver, iters, res, delta_form_inv, err_spec∞, contracts.*, signature }.
VI. Contracts & Assertions C71-7x (suggested thresholds)
- C71-71 (Dual-form gap): delta_form_inv ≤ 1e−3 || y ||_2 (quadratic); relax to 3e−3 for L1/TV.
- C71-72 (Stability): ρ( g_inv(L_*) K ) ≤ 1 + 0.02; cond( K^T K + μ L_*^p ) ≤ 1e6.
- C71-73 (Noise matching): for Gaussian noise, res_p50 ≈ σ √|V| ± 10%; for Poisson, χ²-normalized residual in [0.8, 1.2].
- C71-74 (Sparsity consistency): Jaccard similarity of supports between analysis/synthesis J ≥ 0.7 (when ||x||_0 is comparable).
- C71-75 (Parameter smoothness): semi-blind kernel drift || θ_t − θ_{t−1} || ≤ θ_guard; violations trigger rollback.
- C71-76 (Units & dimensions): check_dim( Kx − y ) = "[unit(y)]", check_dim(R) = "[1]".
VII. Implementation Bindings I71-7* (interfaces, I/O, invariants)
- invert_lens_spectral( L_*, g, μ, r, y ) -> x_spec_inv, report
report: err_spec∞, matvec_calls, time_ms. - invert_lens_variational( K, prior, params, y, solver ) -> x_var, report
prior ∈ { "L2(p)", "L1-analysis(Ψ)", "L1-synthesis(D)", "ElasticNet", "TV_path(B_P)" }. - select_reg_param( y, K, prior, rule ) -> { μ | λ }, diag (rule ∈ { discrepancy, Lcurve, GCV }).
- estimate_kernel_params( U, Λ, y, x_init, Θ, R_θ ) -> θ_hat, diag (semi-blind).
- compose_path_prior( G, Γ_spec ) -> { B_P | D_P }, meta (see Chapter 6).
- eval_delta_form( x_spec_inv, x_var ) -> delta_form_inv
- assert_inverse_contracts( ds, rules ) -> report
- emit_lens_manifest( results, policy ) -> manifest.lens
Invariants: λ_max > 0; order ≥ 0; μ, λ ≥ 0; if anisotropy/visibility is enabled, record hash(L_*) and parameters.
VIII. Cross-References
- Lens kernels & spectral realizations: Chapter 5; feature lenses & path sparsity: Chapter 6.
- Graph operators & kernel approximations: EFT.WP.STG.Dynamics v1.0, Chapter 4; numerical stability & rigidity: Chapter 9.
- Path/topology priors: EFT.WP.Particle.TopologyAtlas v1.0, Chapters 7/9 (paths and spectral coordinates).
- Runtime & dashboard fields: EFT.WP.STG.Dynamics v1.0, Chapter 14.
IX. Quality & Risk Control
- SLI/SLO: delta_form_inv_p99, residual_ratio, cond_p95, PSNR_gain (or SNR_out / SNR_in), latency_p95, matvec_per_iter.
- Fallbacks:
- Excessive gap → increase μ/λ or switch to L2;
- Ill-conditioning → precondition / raise regularization order or narrow passband;
- Semi-blind non-convergence → freeze θ and revert to non-blind;
- Overshoot/ringing → add band limits or switch to TV_path.
- Audit: persist samples of g(λ) and g_inv(λ), parameter trajectories θ_t, convergence curves, contract pass rates and outliers, and the manifest signature chain.
Summary
- Unifies de-lensing as spectral inversion + variational regularization + sparse priors under dual forms.
- Provides implementable formulas for L2 / L1 / TV / semi-blind, with parameter selection and stability bounds.
- For runtime, defines manifest.lens.inverse.*, delta_form_inv, and an auditable SLI/SLO and rollback pathway.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/