Home / Docs-Technical WhitePaper / 27-EFT.WP.Packets.Light v1.0
Chapter 7 — Free-Space Optical Links (Turbulence / Pointing / Weather)
One-sentence goal: Establish an integrated channel convention and compensation baseline for Free-Space Optical (FSO) links that covers turbulence, pointing, and weather; provide configured vs measured dual-form link budgeting and availability assessment; and ensure traceable publication via contracts and manifests.
I. Scope & Objects
- Inputs
- Geometry & attitude: endpoint coordinates r_tx, r_rx (unit = "[m]"), link length L = | r_rx − r_tx |, divergence θ_div, TX/RX apertures D_tx / D_rx, pointing/tracking spectrum S_θ(f) or statistics σ_θ.
- Atmosphere & weather: refractive-index structure profile Cn2(z), visibility V (km), rain rate R_r, aerosol class & extinction σ_ext(λ), temperature / humidity / pressure (RefCond).
- Optical parameters: wavelength λ, center frequency f0 = c_ref/λ, pulse/symbol rate R_s, optical power P_tx.
- Framing / timebase & metrology: frame_spec (Chapter 3), OSNR / Q / EVM metrology channels (Chapter 11), unified clocks tau_mono / ts.
- Outputs
- Link budget: atmospheric attenuation A_atm(λ), pointing loss L_point, turbulence scintillation index σ_I^2, aperture-averaging gain G_ap, equivalent SNR / OSNR.
- Statistical availability: Avail = 1 − P_outage (scenarios: freshwater / urban / desert), fade-distribution parameters (lognormal / gamma-gamma).
- Dual-form gap: configured (model- and weather-based) vs measured (received power / OSNR / error rate) discrepancy delta_form_fso.
- Boundary
Focus on first-order engineering models of intensity fluctuations plus pointing and weather; dispersion and arrival-time harmonization are treated in Chapters 2 and 8; eye-safety is out of scope.
II. Terms & Variables
- Geometry / beam: Rayleigh range z_R = π w_0^2 / λ, beam radius w(z) (Gaussian approx.), receiver geometrical coupling η_geo.
- Turbulence: Rytov log-amplitude variance σ_X^2; scintillation index σ_I^2 = exp(4 σ_X^2) − 1 (weak turbulence); Fried parameter r0; coherence time τ0.
- Pointing error: angular std. σ_θ, receive-plane displacement σ_p ≈ L * σ_θ, pointing loss L_point.
- Weather extinction: visibility V, Kim/Kruse exponent q(V, λ), specific attenuation γ_atm(λ) [dB/km].
- Statistical models: normalized intensity I, I ~ Lognormal(μ, σ^2) or I ~ GammaGamma(α, β); P_outage = P( I < I_th ).
- Dimensional examples: unit(A_atm) = "dB", unit(σ_I^2) = "1", unit(σ_θ) = "rad", unit(L_point) = "dB".
III. Postulates P607-*
- P607-1 (Two forms in parallel): FSO releases must publish both the configured (model budget) and measured (received power / OSNR / error / availability) results, and record delta_form_fso.
- P607-2 (Explicit measures & domains): Any path or statistical integral declares its measure ( ∫_{z∈[0,L]} • dz ), ( ∫_{I} • p(I) dI ), and frequency integral ( ∫_{f} • df ); record the spatial/temporal averaging windows.
- P607-3 (Dimensional compliance): Power / attenuation / angle / length / time fields must pass check_dim; logarithmic (dB) quantities note the reference for conversions.
- P607-4 (Aperture averaging & pointing guardrails): If aperture-averaging gain G_ap or pointing suppression is applied, co-publish the aperture/pointing parameters and bandwidth limits.
- P607-5 (Traceable environment): Weather/meteorology source, sampling time and location (RefCond) must be persisted for replay.
IV. Minimal Equations S607-*
- Atmospheric attenuation (fog / haze / rain / snow)
- Kim model (fog/haze, V in km):
γ_atm(λ)[dB/km] = ( 3.91 / V ) * ( λ / 550 nm )^{−q},
q = { 1.6, V>50; 1.3, 6<V≤50; 0.16V + 0.34, 1<V≤6; V − 0.5, 0.5<V≤1; 0, V≤0.5 }. - Total atmospheric loss:
A_atm(dB) = γ_atm(λ) * L_km + A_rain/snow + A_aerosol (persist add-ons per service model).
- Kim model (fog/haze, V in km):
- Turbulence scintillation & aperture averaging
- Rytov variance (flat terrain):
σ_X^2 ≈ 1.23 * Cn2 * k0^{7/6} * L^{11/6} (weak turbulence; or path integral ∫ Cn2(z) z^{5/6} dz). - Scintillation index (weak): σ_I^2 ≈ exp(4σ_X^2) − 1.
- Aperture averaging (empirical):
G_ap ≈ 1 / ( 1 + ( D_rx / r0 )^{7/3} ), with r0 ≈ [ 0.423 k0^2 ∫ Cn2(z) dz ]^{−3/5 }. - Effective scintillation: σ_{I,eff}^2 = G_ap * σ_I^2.
- Rytov variance (flat terrain):
- Pointing error & geometric coupling
- Receive-plane drift: σ_p ≈ L * σ_θ.
- Gaussian-beam coupling:
η_geo ≈ exp( − ( r_off^2 / w_e^2 ) ), with r_off^2 = σ_p^2 + r_bias^2, w_e^2 = w(L)^2 + D_rx^2/8 (approx.). - Pointing loss (dB): L_point = −10 log10(η_geo).
- Fading statistics & availability
- Lognormal: I = exp( X ), X ~ N( μ_X, σ_X^2 ), P_outage = Φ( ( ln(I_th) − μ_X ) / σ_X ).
- Gamma-Gamma (weak→strong turbulence): shape α, β (inferred from σ_I^2 or Cn2), P_outage = F_{ΓΓ}(I_th; α, β).
- Fade margin & availability: FM_dB = P_rx,med(dB) − P_th(dB); Avail = 1 − P_outage.
- Link budget & OSNR/SNR
- Expected received power:
P_rx(dBm) = P_tx(dBm) − A_geo(dB) − A_atm(dB) − L_point(dB) − A_misc(dB) + G_amp(dB). - Map to OSNR_lin / SNR_lin per Chapters 4 and 11, then to BER / EVM predictions.
- Expected received power:
- Dual-form gap
delta_form_fso = | P_rx,config(dBm) − P_rx,meas(dBm) | + w_σ * | σ_{I,eff,config}^2 − σ_{I,eff,meas}^2 |.
V. Metrology Pipeline M60-7 (Ready → Model → Budget → Verify → Persist)
- Ready: ingest RefCond (met station / visibility / rain / Cn2), geometry & optics, pointing and tracking bandwidth; unify units (m, km, dB, rad).
- Model:
- Weather extinction: Kim/Kruse or local regression for γ_atm(λ);
- Turbulence: build Cn2(z) and σ_X^2 / σ_I^2, compute G_ap and σ_{I,eff}^2;
- Pointing: from σ_θ / σ_p with w(L), D_rx obtain L_point.
- Budget: compute A_atm, L_point, P_rx, OSNR/SNR, and Avail (lognormal / ΓΓ); report fade margin.
- Verify: compare with OSA/ADC/power-meter measurements to get delta_form_fso; assert Avail ≥ Avail_min, FM_dB ≥ FM_min, σ_{I,eff}^2 ≤ σ_I,max; if not, re-provision (rate down / power adjust / reroute).
- Persist:
manifest.packet.fso.* = { geo.hash, optics, weather.hash, Cn2.hash, A_atm, L_point, σ_I^2, G_ap, P_rx, OSNR/SNR, Avail, delta_form_fso, RefCond, contracts.*, signature }.
VI. Contracts & Assertions C60-7x (Suggested Thresholds)
- C60-701 (Two-form gap): delta_form_fso_p95 ≤ tol_fso (recommend tol_fso = 1 dB or per device accuracy).
- C60-702 (Availability): Avail ≥ Avail_min (e.g., ≥ 99.9% for metro/short-haul; long-haul scenario-dependent).
- C60-703 (Scintillation bound): σ_{I,eff}^2 ≤ σ_I,max or P_outage ≤ P_out_max.
- C60-704 (Pointing jitter): σ_θ ≤ σ_θ,max (or σ_p ≤ σ_p,max); tracking bandwidth BW_track ≥ dominant pointing-disturbance band.
- C60-705 (Power / OSNR): P_rx(dBm) ≥ P_min + FM_min, OSNR_dB ≥ OSNR_min_dB.
- C60-706 (Dimensional compliance): all fields pass check_dim; dB↔linear conversions recorded in the manifest.
VII. Implementation Bindings I60-7* (interfaces, I/O, invariants)
- I60-71 fso_attenuation(weather, λ) -> γ_atm[dB/km] ( weather ∈ { V, R_r, aerosol }; persist model version )
- I60-72 scintillation(Cn2, λ, L, D_rx) -> { σ_X2, σ_I2, G_ap }
- I60-73 pointing_loss(L, θ_div, D_rx, σ_θ, r_bias) -> L_point[dB]
- I60-74 availability(stats, P_rx, P_th, model ∈ { lognormal, gammagamma }) -> { Avail, P_outage }
- I60-75 link_budget_fso(params) -> { A_atm, L_point, P_rx, OSNR/SNR, FM_dB }
- I60-76 compare_config_meas(cfg_metrics, meas_metrics) -> delta_form_fso
- I60-77 emit_fso_manifest(results, policy) -> manifest.packet.fso
Invariants: two_forms_present = true; RefCond consistent with weather/Cn2 sampling; check_dim(*) passes; geometry/device hashes traceable.
VIII. Cross-References
- Physical baselines & arrival time: Chapter 2; compensation: Chapter 6; modulation & OSNR/SNR: Chs. 4 / 11; arrival-time harmonization: Chapter 8; routing & power equalization: Chapter 5.
- Timebase & framing: Chapter 3 (R_s and T_guard); panels & runtime: Chapter 14.
IX. Quality & Risk Control
- SLI / SLO: delta_form_fso_p95, Avail, FM_dB, σ_{I,eff}^2, P_rx_p50/p95, OSNR_dB_p95.
- Fallback strategies: sudden visibility drop → lower rate / reroute / switch to backup wired link; increased pointing jitter → stronger aperture averaging / higher tracking bandwidth; stronger scintillation → larger RX aperture / site diversity / time interleaving.
- Audit: weather/Cn2 data sources & timestamps, link-budget vs measurements, threshold evolution, manifest signature chain & replay consistency.
Summary
- This chapter unifies weather extinction, turbulence scintillation, and pointing error for FSO into a single budgeting and statistical-availability framework, with configured vs measured dual-form validation.
- Through P607 / S607 / M60-7 / C60-7x / I60-7* and the manifest.packet.fso.* schema, FSO link modeling, release, and rollback are traceable, auditable, and operational.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/