Home / Docs-Technical WhitePaper / 28-EFT.WP.Propagation.PathRedshift v1.0
Chapter 1 — Path Redshift: Domain Definition & Scope
One-sentence goal: Delimit the Path Redshift domain—its objects, I/O, and engineering boundaries—and establish a unified publication convention and manifest keys that combine redshift decomposition with the two-form arrival-time framework.
I. Scope & Objects
- Objects (paths & worldlines)
Propagation path gamma(ell) (fiber / free space / deep space segments), or spacetime worldline Gamma(tau); loop and rotational geometry (Omega, A). - Objects (time–frequency & media)
Local timebases at TX/RX tau_mono / ts, local clock parameters offset / skew / J; dispersive media fields n_eff(f,x), n_phi(f), n_g(f); gravitational potential phi_grav(x); cosmological scale factor a(t). - Inputs
- TX/RX state: state_emit / state_obs = { r, v, a, att, Omega };
- Ephemerides & potentials: ephemeris, grav_model;
- Media & environment: n_field, atmospheric/ionospheric parameters, RefCond;
- Observations & metrology: carrier / spectral-line streams (PLL / CFO / line-fitting), metrology panels, and calibration evidence.
- Outputs
- Redshift decomposition: z_parts = { z_kin, z_grav, z_med, z_cos, z_inst, z_proc } and composite z_path;
- Two-form arrival time: T_arr^{form1}, T_arr^{form2}, their difference delta_form, and the harmonized T_arr*;
- Manifest: manifest.redshift.* containing { RefCond, z_parts, z_path, T_arr*, delta_form, u/U, contracts.*, signature }.
- Boundary (exclusions)
Higher-order strong-field relativistic and non-perturbative cosmological corrections, and quantum frequency shifts are out of the default engineering scope; include as extended fields with sources and assumptions when required.
II. Terms & Variables
- Path & geometry: gamma(ell), L_gamma, t_hat, A, los / nlos.
- Spacetime & dynamics: t, tau, v, beta = v / c_ref, gamma_L = 1 / sqrt(1 − beta^2), Omega, phi_grav.
- Media & dispersion: n_phi(f), n_g(f) = n_phi − f * ( d n_phi / d f ), n_eff(f,x).
- Redshift & time–frequency: z, f_emit, f_obs, lambda_emit, lambda_obs, a(t).
- Arrival time & timebase: T_arr, c_ref, delta_form, tol_Tarr, tau_mono, ts, offset / skew / J.
- Dimensional examples: unit(z) = "1", unit(T_arr) = "[T]", unit(n_eff) = "1".
III. Postulates P65-1x
- P65-11 (Redshift factorization):
1 + z_path = (1+z_kin)(1+z_grav)(1+z_med)(1+z_cos)(1+z_inst)(1+z_proc);
small-signal approximation z_path ≈ ∑ z_i. - P65-12 (Two forms in parallel): arrival-time publication must present
- T_arr^{form1} = ( 1 / c_ref ) * ( ∫_{gamma} n_eff d ell )
and
T_arr^{form2} = ( ∫_{gamma} ( n_eff / c_ref ) d ell )
with recorded delta_form.
- P65-13 (Explicit measures): every integral/average declares its domain & measure:
( ∫_{gamma(ell)} • d ell ), ( ∫_{t∈W} • dt ), ( ∫_{f∈B} • df ). - P65-14 (Dimensional compliance): every field entering equations passes check_dim( y − f(x) ); log↔linear conversions are recorded as scale.note.
- P65-15 (RefCond traceability): ephemerides / potentials / media / meteorology / timebase recorded in RefCond with hash / validity.
IV. Minimal Equations S65-1x
- S65-11 (Redshift definition):
1 + z = f_emit / f_obs = lambda_obs / lambda_emit. - S65-12 (Composite convention):
z_path = compose( z_kin, z_grav, z_med, z_cos, z_inst, z_proc ) (multiplicative form or linear-sum approximation; specify in publication). - S65-13 (Two-form arrival-time gap):
delta_form = | ( 1 / c_ref ) * ( ∫ n_eff d ell ) − ( ∫ ( n_eff / c_ref ) d ell ) |. - S65-14 (Dispersion mapping):
n_g = n_phi − f * ( d n_phi / d f ), used to keep phase- and group-based arrival-time / frequency shifts consistent.
V. Metrology Pipeline M65-1 (Domain Ready → Modeling → Verification → Persistence)
- Domain ready: unify coordinates and tau_mono / ts; load path & device inventories and RefCond (ephemerides / potentials / media / timebase).
- Model / estimate: compute z_kin / z_grav / z_med / z_cos and the observation z_meas; compute T_arr^{form1/form2} in parallel.
- Verify: run check_dim; enforce the two-form gate delta_form ≤ tol_Tarr; calibrate biases & scale via references (frequency ratios / loopbacks).
- Persist: emit
manifest.redshift.* = { gamma.hash, RefCond, z_parts, z_path, T_arr_forms, delta_form, u/U, contracts.*, signature }.
VI. Contracts & Assertions C65-1x (suggested thresholds)
- C65-101 (Two-form gap): delta_form_p95 ≤ tol_Tarr (suggest tol_Tarr = 1e−3 * T_arr or link-specific).
- C65-102 (Redshift composition residual): | z_meas − z_path |_p95 ≤ tol_z (SNR/window-dependent).
- C65-103 (RefCond freshness): ephemerides / potentials / media recency ≤ Δt_max; stale → reject or degrade.
- C65-104 (Dimensional compliance): all fields pass check_dim; unit(z) = "1".
- C65-105 (Path monotonicity & geometric consistency): non_decreasing(ell); rotational/loop geometry (Omega / A) consistent (Sagnac term).
VII. Implementation Bindings I65-1* (interfaces, I/O, invariants)
- I65-11 build_refcond(sources) -> RefCond (aggregate ephemerides / potentials / media / timebase)
- I65-12 eval_tarr_forms(n_eff, c_ref, gamma) -> { T_form1, T_form2, delta_form }
- I65-13 compose_z(z_parts, mode) -> z_path (mode ∈ { product, linear })
- I65-14 compare_z(z_path, z_meas) -> { resid, pass }
- I65-15 assert_redshift_contracts(ds, rules) -> report
- I65-16 emit_redshift_manifest(results, policy) -> manifest.redshift
Invariants: two_forms_present = true; check_dim(*) passes; gamma.hash / RefCond.hash are traceable.
VIII. Cross-References
- Timebase & synchronization: Energies Timebase/Sync volume (tau_mono / ts / offset / skew / J).
- Path integrals & arrival time: EFT.WP.Metrology.PathCorrection v1.0 (two forms & dispersion).
- Instrumentation & calibration: EFT.WP.Metrology.Instrument v1.0.
- Cleaning & contract persistence: EFT.WP.Methods.Cleaning v1.0.
IX. Quality & Risk Control
- SLI / SLO: delta_form_p95, | z_meas − z_path |_p95, panel_freshness, RefCond_coverage.
- Fallback strategies: two-form drift ↑ → standardize to form2 and re-estimate media fields; z_meas mismatch → revert potential/ephemeris versions or shorten windows; stale RefCond → degrade or pause publication.
- Audit: manifest signature chains, source hashes, two-environment recomputations with ε_dual, replay scripts, and panel snapshots.
Summary
- This chapter establishes the domain baseline for Path Redshift: redshift decomposition and two-form arrival time computed and published in parallel, with RefCond traceability and dimensional compliance.
- It provides an executable skeleton P65-1x / S65-1x / M65-1 / C65-1x / I65-1*, with artifacts delivered as manifest.redshift.* to enable reproducible, auditable, and rollback-ready engineering governance.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/