HomeDocs-Technical WhitePaper31-EFT.WP.BH.TensionWall v1.0

Chapter 5 — Wall Construction & Parameterization


I. One-Sentence Aim
Provide an executable parameterization and construction workflow for the Tension Wall Sigma_TW, yielding a unified expression and calibration convention for the profile W(r), thickness Delta_w, center surface r_H, and strength measure Xi_TW(r). Ensure seamless coupling with Phi_T, n_eff, and both arrival-time gauges.


II. Scope & Non-Goals


III. Minimal Terms & Symbols


IV. Design Principles & Constraints (building on P40-*)


V. Parametric Model Families (S40-25 … S40-29)

  1. S40-25 Normalized hyperbolic transition
    • W(r) = 0.5 * ( 1 + tanh( ( r − r_H ) / sigma_w ) )
    • sigma_w ≈ Delta_w / 2, Xi_TW(r) = | dW/dr | = 0.5 * sech^2( ( r − r_H ) / sigma_w ) / sigma_w
  2. S40-26 Logistic transition
    • W(r) = 1 / ( 1 + exp( − ( r − r_H ) / sigma_w ) )
    • Equivalent smoothness to S40-25; convenient when fitting asymmetric tails in Delta_w.
  3. S40-27 Piecewise monotone splines (C^1 or C^2)
    • With nodes { r_i } and values { W_i }, enforce 0 = W_0 < … < W_N = 1 and nonnegative first differences.
    • Use monotone splines or piecewise cubic Hermite to avoid ringing; Xi_TW follows from spline derivatives.
  4. S40-28 Exponential tail correction
    When observations indicate a slow outer approach, augment W(r) ← W(r) + alpha * exp( − ( r − r_H ) / lambda ), then clip to [0,1].
  5. S40-29 Non-spherical expansion
    • r_H(theta, phi) = r0 * [ 1 + ∑_{l=2}^{L} ∑_{m=−l}^{l} a_{lm} · Y_{lm}(theta, phi) ]
    • Apply the same approach to Delta_w(theta, phi); control |a_{lm}| to prevent multiple crossings and self-intersections.

VI. TWProfile Object & Fields


VII. Smoothing & Regularization (S40-30 … S40-32)

  1. S40-30 Convolutional smoothing
    • W_epsilon(r) = ∫ K_epsilon( r − s ) · W(s) ds, with ∫ K_epsilon = 1.
    • Typical kernel: Gaussian; use epsilon ≤ Delta_w / 3 to avoid over-smoothing.
  2. S40-31 Tikhonov / TV regularization
    • J[W] = ∫ ( (dW/dr)^2 + lambda · W^2 ) dr or J[W] = ∫ | dW/dr | dr.
    • Set lambda via cross-validation or independent benchmarks.
  3. S40-32 Physical clamping
    Enforce W ∈ [0,1], Xi_TW ≥ 0 during construction/evaluation; log trigger rates.

VIII. Non-Sphericity & Geometric Consistency


IX. Calibration & Inversion Flows (M40-7 … M40-12)


X. Thin-/Thick-Wall Switching & Validation (S40-33 … S40-35)

  1. S40-33 Switch criteria
    • If Delta_w / r_H ≤ eta_w, use thin-wall: represent wall contribution via Delta_T_sigma.
    • Otherwise, thick-wall: integrate directly within the wall ∫_{layer} ( n_eff / c_ref ) d ell.
  2. S40-34 Consistency test
    Near the threshold eta_w, require | T_arr^{thick} − (T_arr^{thin} + Delta_T_sigma) | ≤ tau_switch.
  3. S40-35 Sensitivity alert
    If ∂T_arr/∂Delta_w or ∂T_arr/∂r_H dominates, flag geometry–physics coupling degeneracy and expand the set of paths and frequencies.

XI. Implementation Bindings & Interfaces (I40- interop)*


XII. Risks & Systematic-Error Safeguards


XIII. Cross-References


XIV. Deliverables


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/