Home / Docs-Technical WhitePaper / 31-EFT.WP.BH.TensionWall v1.0
Appendix A — Symbols, Units & Dimensional Checks (TW Edition)
- I. One-Sentence Aim
Provide unified notation and SI unit/dimension conventions for symbols related to the Tension Wall Sigma_TW, together with an executable dimensional-check workflow and guards against common pitfalls—so that T_arr, n_eff, Phi_T, and wall terms W(r), Xi_TW(r), Delta_T_sigma remain dimensionally self-consistent under both arrival-time gauges. - II. Applicability & Non-Goals
- Covered: base dimensions; unified SI units; TW-specific symbols and dimensions; continuous/discrete checks for both gauges; parameter dimensions for wall and band terms; dimensions for interface quantities and the energy triplet; automated checking steps and examples.
- Not covered: device-level unit restrictions; replacements for Chapter 7 uncertainty propagation or Chapter 9 numerical details.
- III. Base Dimensions & SI Norms
- Base dimensions: [L] (length), [T] (time), [M] (mass). Angular quantities are dimensionless by default (radians).
- SI units: length m, time s, speed m·s^-1, frequency Hz = s^-1. Path line element and path length use meters.
- Rules: wrap inline symbols in backticks; parenthesize all divisions, integrals, and composite operators; explicitly declare the path gamma(ell) and the measure d ell.
- IV. Fixed Symbols & Corresponding Dimensions (TW Edition)
- Space, time & path
- x: position, dim = [L]; t: time, dim = [T]
- ell: path parameter, dim = [L]; gamma(ell): path map, dim = [L]
- d ell: line element, dim = [L]; L_path = ∫ d ell, dim = [L]
- Arrival time & speeds
- T_arr: arrival time, dim = [T]
- c_ref: reference speed (constant or field), dim = [L][T^-1]
- c_loc(x,t,f) = c_ref / n_eff, dim = [L][T^-1]
- Refractive index & decomposition
- n_eff(x,t,f): effective refractive index, dim = 1
- n_common(x,t): common term, dim = 1; n_path(x,t,f): path/band term, dim = 1
- Wall & interface
- W(r): normalized wall profile (0→1), dim = 1
- Xi_TW(r) = | dW/dr |, dim = [L^-1]
- r_H: characteristic radius, dim = [L]; Delta_w: wall thickness, dim = [L]
- Delta_T_sigma: zero-thickness correction to arrival time, dim = [T]
- Potential & gradient
- Phi_T(x,t): tension potential, dim = ? (implementation may non-dimensionalize)
- grad_Phi_T(x,t): dim = dim(Phi_T)[L^-1]
- Interface quantities & energy triplet
- C_sigma = Phi_T^+ − Phi_T^-, dim = dim(Phi_T)
- J_sigma = dot( grad_Phi_T^+ − grad_Phi_T^- , n_vec ), dim = dim(grad_Phi_T)
- R_TW, T_trans, A_sigma: reflection, transmission, loss coefficients, dim = 1, with R_TW + T_trans + A_sigma = 1
- Directional vectors
- n_vec: outward unit normal, dim = 1; t_hat: path-unit tangent, dim = 1
- V. Dimensional Checks for the Two Arrival-Time Gauges (Continuous & Discrete)
- Constant-factored gauge
- Continuous: T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
Check: ∫ n_eff d ell → [L]; multiply by (1/c_ref) → [T]. - Discrete: T_arr ≈ ( 1 / c_ref ) * ∑ n_eff[ gamma[k] ] · Δell[k] → [T]
- General gauge
- Continuous: T_arr = ( ∫ ( n_eff / c_ref ) d ell )
Check: (n_eff/c_ref) → [T][L^-1]; times d ell → [T]. - Discrete: T_arr ≈ ∑ ( n_eff[ gamma[k] ] / c_ref[ gamma[k] ] ) · Δell[k] → [T]
- Lower-bound consistency: since n_eff ≥ 1, always T_arr ≥ L_path / c_ref (equivalently embedded in the general-gauge integrand).
- VI. Parameter Dimensions for Wall & Band Terms
- Isotropic small-gradient expansion (Chapter 3 S40-5)
- n_eff ≈ a0 + a1 · ( Phi_T − Phi_0 ) + a2 · norm( grad_Phi_T )^2 + u0 · W(r) + u1 · Xi_TW(r)
- dim(a0) = 1; dim(a1) = 1 / dim(Phi_T)
- dim(a2) = 1 / dim(grad_Phi_T)^2 = [L^2] / dim(Phi_T)^2
- dim(u0) = 1; dim(u1) = 1 / [L]
- Directional extension (Chapter 3 S40-6)
- … + b1 · dot( grad_Phi_T , t_hat ) + b1_sigma · dot( grad_Phi_T , n_vec )
- dim(b1) = dim(b1_sigma) = 1 / dim(grad_Phi_T) = [L] / dim(Phi_T)
- Band polynomial (Chapter 3 S40-7)
- n_path ≈ ∑_{m=1}^M c_m(x,t) · ( f − f0 )^m, with dim( (f − f0)^m ) = [T^-m]
- dim(c_m) = [T^m]; if using normalized ((f − f0)/f_ref)^m, then dim(c_m) = 1
- Zero-thickness correction (Chapter 3 S40-11)
- Delta_T_sigma ≈ k_sigma · H( crossing ), with dim(H) = 1, hence dim(k_sigma) = [T]
- VII. Interface & Inter-Layer Dimensional Checks
- Continuous: Phi_T^+ = Phi_T^-, J_sigma = 0; if F is continuous, then n_eff^+ = n_eff^- (dimensionally coherent).
- Potential jump: C_sigma ≠ 0, dim(C_sigma) = dim(Phi_T); effects on n_eff propagate through a1, b1/b1_sigma dimensions.
- Flux jump: J_sigma ≠ 0, dim(J_sigma) = dim(grad_Phi_T); if a wall-normal response coefficient k_sigma^n is added in n_eff, then dim(k_sigma^n) = 1 / dim(grad_Phi_T).
- Feasible side limits: after matching, enforce n_eff^+ ≥ 1 and n_eff^- ≥ 1; any violation is infeasible.
- VIII. Uncertainties & Dimensions
- Rule: u(q) carries the same dimensions as q; combined u_c(T_arr) has [T].
- Typical items: u(c_ref) → [L][T^-1], u(n_eff) → 1, u(Δell) → [L], u(T_arr) → [T], u(Delta_T_sigma) → [T].
- Reporting: always use mean ± k·u_c in [T]; the differential ΔT_arr(f1,f2) is also [T].
- IX. Coordinates & Unit Mappings (Implementation Contract)
- units_spec: declare length m, time s, speed m·s^-1, frequency Hz. If inputs come in km or ms, convert to SI at ingress and record the mapping.
- coords_spec: declare the coordinate frame (Cartesian/Spherical or ECEF/ENU); any transform must preserve the units of Δell and update hashes.
- Path constraints: gamma[k] and Δell[k] share units; t_hat[k] and n_vec are dimensionless; interface coordinates use the same frame as the path.
- X. Automated Dimensional-Check Workflow (check_dimension recommended order)
- Contract intake: load units_spec, coords_spec, mode, thresholds eta_T, eta_w, tau_switch.
- Symbol binding: fix dim(c_ref)=[L][T^-1], dim(n_eff)=1, dim(d ell)=[L], dim(T_arr)=[T].
- Equation checks:
- Constant-factored: verify dim( ∫ n_eff d ell / c_ref ) = [T]
- General: verify dim( ∫ ( n_eff/c_ref ) d ell ) = [T]
- TW-term checks: infer and validate dimensions for a1, a2, u1, b1, b1_sigma, c_m, k_sigma against this appendix.
- Interface-term checks: ensure C_sigma, J_sigma dimensions are coherent with their effects in n_eff; R_TW + T_trans + A_sigma is an energy balance (dimensionless).
- Discrete consistency: confirm units for Δell[k] and c_ref[k] match; include segment endpoints explicitly; forbid cross-interface interpolation.
- Report: emit DimReport (see Section XII) and write to logs.
- XI. Common Errors & Safeguards
- Unit mixing: path in km while c_ref in m·s^-1 → T_arr off by 10^3. Safeguard: normalize at ingress and record.
- Missing parentheses: ∫ n_eff / c_ref d ell vs ∫ ( n_eff / c_ref ) d ell are not equivalent. Safeguard: enforce parentheses.
- Angle units: passing degrees to trig functions. Safeguard: declare radians and convert if needed.
- Parameter mis-dimensioning: c_m not [T^m] or u1 not [L^-1]. Safeguard: infer and validate during model assembly.
- Interface mislabeling: entering C_sigma or J_sigma as dimensionless. Safeguard: correct to dim(Phi_T) / dim(grad_Phi_T) or reject.
- Naming confusion: never mix T_fil with T_trans; never mix n (number density) with n_eff (effective index).
- XII. Minimal DimReport Fields (TW Edition)
- units_spec, coords_spec, mode ∈ {constant, general}
- ok(formula_S40-10), ok(lower_bound), ok(discrete_forms)
- dims: { c_ref:[L T^-1], n_eff:1, d_ell:[L], T_arr:[T], Phi_T:?, grad_Phi_T:?·[L^-1], W:1, Xi_TW:[L^-1] }
- params_dims: { a0:1, a1:1/dim(Phi_T), a2:[L^2]/dim(Phi_T)^2, u0:1, u1:[L^-1], b1:[L]/dim(Phi_T), b1_sigma:[L]/dim(Phi_T), c_m:[T^m], k_sigma:[T] }
- interfaces: { C_sigma:dim(Phi_T), J_sigma:dim(grad_Phi_T), R_TW:1, T_trans:1, A_sigma:1 }
- tw_switch: { eta_w:1, tau_switch:[T] }
- discrete_consistency: { Δell_unit:ok, c_ref_unit:ok, segmentation:no-cross-interface, interpolation:ok }
- notes: anomalies & auto-fix notes
- hashes: hash(Phi_T), hash(gamma), hash(code), hash(TWProfile)
- XIII. Worked Checks (Four Examples)
- Example 1 | Uniform outer region, no wall
- Condition: n_eff ≡ 1, arbitrary path.
- Conclusion: T_arr = L_path / c_ref, dimension [L]/([L][T^-1]) = [T]; lower bound is tight.
- Example 2 | Thin-wall zero-thickness correction
- Condition: single crossing, Delta_T_sigma = k_sigma.
- Dimension: dim(k_sigma) = [T]; T_arr_total = T_arr + Delta_T_sigma remains [T].
- Example 3 | First-order band dispersion
- Condition: n_path ≈ c_1 ( f − f0 ).
- Dimension: dim(c_1) = [T], hence dim(ΔT_arr) = [T]; both gauges agree.
- Example 4 | Directional terms (normal/tangential)
- Condition: n_eff ≈ a0 + b1 · dot( grad_Phi_T , t_hat ) + b1_sigma · dot( grad_Phi_T , n_vec ).
- Dimensions: dim(b1) = dim(b1_sigma) = [L]/dim(Phi_T); if Phi_T is non-dimensionalized, dim(b1) = dim(b1_sigma) = [L].
- XIV. Cross-References
- EFT.WP.BH.TensionWall v1.0 Chapter 3 (Minimal Equations & Structural Model), Chapter 5 (Wall Parameterization), Chapter 6 (Propagation & Arrival Time), Chapter 8 (Interface Matching), Chapter 12 (Error Budget)
- EFT.WP.Propagation.TensionPotential v1.0 Appendix A (Symbols & Dimensions)
- EFT.WP.Core.Equations v1.1 S06-* (notation & operators)
- EFT.WP.Core.Metrology v1.0 M05-, M10- (units & traceability)
- XV. Deliverables
- Dimension–unit binding checklist (ready to embed in the Contract).
- Execution order and decision rules for check_dimension (including TW terms).
- Sample DimReport and log-field mapping (including tau_switch and energy-triplet entries).
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/