Home / Docs-Technical WhitePaper / 33-EFT.WP.Cosmo.EarlyObjects v1.0
Appendix A — Symbols, Units, and Dimension Checks
I. One-Sentence Goal
Provide a unified symbol set, SI units, and dimensional conventions for this Early Objects volume, together with an executable dimension-checking workflow and common-pitfall guards. The intent is to keep the dimensional algebra self-consistent across Catalog / Seeds / Trajectory, Phi_T / grad_Phi_T, L_nu / LC, n_eff, T_arr / Delta_T_arr, Delta_T_sigma, and the energy triplet—under both arrival-time forms and throughout data I/O.
II. Applicability & Non-Goals
- Covered: base dimension set, unified units, core symbols & dimensions, two-form arrival checks (continuous & discrete), spectroscopic and K-correction dimensionality, interfaces & energy triplet, an automated dimension-check sequence with a DimReport template, plus common errors & safeguards.
- Not covered: uncertainty propagation (Ch. 7) and numerical implementation details (Ch. 9); device-specific units for instrument response.
III. Base Dimensions & SI Units
- Base dimensions: [L] (length), [T] (time), [M] (mass). Angles are dimensionless (radian).
- SI units: length m; time s; speed m•s^-1; frequency Hz = s^-1; mass kg; power W.
- Line element: enforce dim(d ell) = [L]. Any coordinate-to-metric mapping must yield a physical arclength in consistent units.
IV. Fixed Symbols with Dimensions (EarlyObjects)
- Coordinates & metric
eta (conformal time), dim = [T] when used as a time parameter; a(eta) (scale factor), dim = 1.
chi (comoving radius) is mapped to physical arclength per metric_spec; post-mapping, dim(chi) ≡ [L] in engineering use. - Object & state
state = { M, R, J, a_bh, SFR, Z, … }
dim(M)=[M]; dim(R)=[L]; dim(J)=[M•L^2•T^-1]; dim(a_bh)=1; dim(SFR)=[M•T^-1]; dim(Z)=1. - Field & potential
T_fil(x,t) (tension), dimension set by model/medium;
Phi_T(x,t) (tension potential), recommended non-dimensionalization (declare Phi_ref in Contract) so dim(Phi_T)=1;
grad_Phi_T(x,t), dim = dim(Phi_T)[L^-1]. - Propagation & path
n_eff(x,t,f) (effective refractive index), dim = 1, with hard constraint n_eff ≥ 1;
c_ref, dim = [L][T^-1]; c_loc = c_ref / n_eff, dim = [L][T^-1];
gamma(ell) (arclength parameterization), dim(gamma)=[L]; d ell, dim=[L]. - Spectrum & light curve
L_nu(f) (rest-frame spectral density), typical dim = [W•Hz^-1] (or declared photometric system in Contract);
F_nu(f) (observed spectral density), dim = [W•m^-2•Hz^-1];
LC(t) (light curve), unit depends on definition (luminosity/flux/count-rate) and must be declared in Contract. - Arrival times & corrections
T_arr, dim = [T]; Delta_T_arr, dim = [T];
zero-thickness correction Delta_T_sigma, dim = [T]. - Interfaces & energy
R_env, T_trans, A_sigma (reflection, transmission, absorption), dim = 1, with R_env + T_trans + A_sigma = 1.
Jump terms: C_sigma = Phi_T^+ − Phi_T^-, dim = dim(Phi_T);
J_sigma = dot( grad_Phi_T^+ − grad_Phi_T^- , n_vec ), dim = dim(grad_Phi_T).
V. Two-Form Arrival-Time Dimension Checks (continuous & discrete)
- Constant pull-out form
Continuous: T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell ) ⇒ ([L]/[L•T^-1]) = [T]
Discrete: T_arr ≈ (1/c_ref) * ∑ n_eff[gamma[k]] • Δell[k] ⇒ [T] - General form
Continuous: T_arr = ( ∫ ( n_eff / c_ref ) d ell ) ⇒ ([T•L^-1]•[L]) = [T]
Discrete: T_arr ≈ ∑ ( n_eff[gamma[k]] / c_ref[gamma[k]] ) • Δell[k] ⇒ [T] - Lower-bound coherence: because n_eff ≥ 1, always T_arr ≥ L_path / c_ref (the general form encodes this inside the integrand).
VI. Spectroscopy & K-Correction Dimensionality
Observed spectrum:
F_nu(f_obs) = L_nu(f_em) / ( 4π D_L^2 ) • K(z_obs), with f_em = f_obs • (1+z_obs)
- dim(F_nu) = [W•m^-2•Hz^-1], dim(L_nu) = [W•Hz^-1], dim(D_L) = [L], dim(K) = 1.
- LC(t): if flux-based, dim(LC) = [W•m^-2]; if count-rate, declare unit in Contract and record in DimReport.
- Joint dimensionality: when building a joint likelihood over { T_arr, Delta_T_arr, F_nu, LC }, declare all units in the Contract and retain the stance for D_L in logs.
VII. Causation/Growth Dimensional Checks (examples)
- dM/dt = F_M( … ) ⇒ dim=[M•T^-1]
- dR/dt = F_R( … ) ⇒ dim=[L•T^-1]
- dJ/dt = F_J( … ) ⇒ dim=[M•L^2•T^-2]
- da_bh/dt = F_a( … ) ⇒ dim=[T^-1]
- dSFR/dt ⇒ dim=[M•T^-2]
- grad_Phi_T = g_T(T_fil) • grad(T_fil) ⇒ dim(g_T) = dim(Phi_T)/dim(T_fil); if Phi_T is non-dimensionalized, dim(g_T) = 1/dim(T_fil).
VIII. Layer/Interface Parameter Dimensions
- If a layer term uses Xi_k = | dW_k/dchi | (from LayeredSea), then dim(Xi_k) = [L^-1].
- If n_eff has a layer component u1_k • Xi_k, to remain dimensionless we need dim(u1_k) = [L].
- Event-type correction Delta_T_sigma ≈ k_sigma • H(crossing): dim(k_sigma) = [T], dim(H)=1.
- Directional term b1 • dot( grad_Phi_T , t_hat ): dim(b1) = 1 / dim(grad_Phi_T) = [L]/dim(Phi_T); if Phi_T is non-dimensionalized then dim(b1) = [L].
IX. Automated Dimension-Check Workflow (check_dimension sequence)
- Contract ingest: load units_spec, coords_spec, metric_spec, mode, tolerances:{eps_T,eta_T,eta_w,tau_switch}.
- Bind canonical dimensions: dim(c_ref)=[L][T^-1], dim(n_eff)=1, dim(d ell)=[L], dim(T_arr)=[T], dim(Delta_T_sigma)=[T]; if using layer terms, set dim(Xi_k)=[L^-1].
- Arrival checks: verify both two-form continuous and discrete equations reduce to [T]; emit ok(formula_const/general).
- Spectroscopic checks: verify dimensionality of F_nu = L_nu/(4π D_L^2)•K; confirm use sites of f_em = f_obs•(1+z).
- Coupling/layer checks: infer whether u1_k, b1, b1_n, k_sigma units match this Appendix; flag mismatches.
- Discrete coherence: validate unit alignment of Δell and c_ref; enforce explicit inclusion of { ell_i } endpoints; no cross-interface interpolation.
- Report: emit a DimReport and persist to logs (fields below).
X. Common Errors & Safeguards
- Unit mismatch: path in km while c_ref is m•s^-1 ⇒ T_arr off by 10^3. Guard: canonicalize units at ingress; record mapping.
- Missing parentheses: ∫ n_eff / c_ref d ell vs ∫ ( n_eff / c_ref ) d ell differ in meaning. Guard: always parenthesize the integrand.
- Angle units: degrees passed to trig expecting radians. Guard: declare radian convention and convert if needed.
- Layer coefficient mis-units: u1_k not cancelling with Xi_k to a dimensionless n_eff. Guard: infer & check at assembly time.
- Interface mis-spec: C_sigma / J_sigma logged dimensionless. Guard: correct to dim(Phi_T) / dim(grad_Phi_T) or reject.
- Naming confusion: using T_fil where T_trans is intended, or n for n_eff. Guard: block at the Contract layer.
- Missing metric: absent metric_spec leaves d ell ambiguous. Guard: reject Contract if missing.
XI. DimReport (EarlyObjects) — Minimal Fields
- Meta: units_spec, coords_spec, metric_spec, mode ∈ {constant, general}
- Arrival: ok(formula_const), ok(formula_general), ok(lower_bound), ok(discrete_forms)
- Dimension table:
{ c_ref:[L T^-1], n_eff:1, d_ell:[L], T_arr:[T], Delta_T_sigma:[T], Phi_T:?, grad_Phi_T:?•[L^-1], L_nu:[W Hz^-1], F_nu:[W m^-2 Hz^-1] } - Parameter units: { u1_k:[L], b1:[L]/dim(Phi_T), b1_n:[L]/dim(Phi_T), k_sigma:[T] } (when layer/directional terms are enabled)
- Interface & energy: { C_sigma:dim(Phi_T), J_sigma:dim(grad_Phi_T), R_env:1, T_trans:1, A_sigma:1 }
- Differentials: { dim(Delta_T_arr):[T] }
- Notes: anomalies and auto-fix annotations
- Hashes: hash(Catalog/Seeds/Trajectory/SeaProfile/Phi_T/n_eff/gamma/code)
XII. Worked Checks (Four Illustrations)
- Ex.1 — Uniform medium: n_eff ≡ 1 ⇒ T_arr = L_path / c_ref, so [L]/([L][T^-1]) = [T]; lower bound attained.
- Ex.2 — Thin-layer zero-thickness correction: single crossing, Delta_T_sigma = k_sigma, dim(k_sigma) = [T]; T_arr_total = T_arr + Delta_T_sigma remains [T].
- Ex.3 — First-order band dispersion differential: n_path ≈ c_1(f−f0), dim(c_1)=[T] ⇒ dim(Delta_T_arr)=[T]; two-form coherence holds.
- Ex.4 — Directional term: n_eff ≈ a0 + b1 • dot(grad_Phi_T, t_hat); if Phi_T is non-dimensionalized, dim(b1)=[L], thus overall dimensionless.
XIII. Cross-References
- EFT.WP.Cosmo.EarlyObjects v1.0: Ch. 3 (minimal equations), Ch. 5 (coupling & growth), Ch. 6 (radiation & propagation), Ch. 9 (numerics), Ch. 12 (error budget).
- EFT.WP.Propagation.TensionPotential v1.0: two-form and path expressions.
- EFT.WP.Cosmo.LayeredSea v1.0: layer and interface dimensional alignment.
- EFT.WP.Core.Equations v1.1 / Metrology v1.0: notation and traceability.
XIV. Deliverables
- Dimension–unit binding sheet (drop-in to the Contract).
- check_dimension execution order & decision rules (incl. spectroscopy and layer terms).
- DimReport examples with log-field mapping (including eta_T / tau_switch and energy-triplet entries).
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/