HomeDocs-Technical WhitePaper34-EFT.WP.Astro.Acceleration v1.0

Chapter 7 Energy Gain & Spectrum Formation


I. Abstract & Scope
This chapter derives steady and quasi-steady spectrum-formation equations under unified A_acc(E), tau_acc(E), tau_loss(E), and tau_esc(E), defines the local spectral index alpha_loc(E), break and cutoff scales, and maps to observables N(E) and Phi(E). Equations use English notation in backticks; SI units; composite expressions are parenthesized.

II. Dependencies & References

III. Normative Anchors (added in this chapter, S50-*)

IV. Body Structure


I. Master Equation & Dimensional Audit


II. Approximations & Boundaries


III. Breaks & Cutoffs


IV. Observational Mapping & Diagnostics


V. Key Equations & Derivations (S-series)


VI. Methods & Flows (M-series)


IV. Cross-References within/beyond this Volume


V. Validation, Criteria & Counterexamples

  1. Positive criteria:
    • An energy band with tau_acc(E) < min{ tau_loss(E), tau_esc(E) } and decreasing alpha_loc(E) (hardening).
    • Systematic shifts of {E_br} under modulation of {A_rec, A_shear}.
    • Phi(E) synthesized via S50-3/S50-4 matches multi-band data with consistent indices over the same window.
  2. Negative criteria:
    • If k_STG → 0, beta_TPR → 0, or gamma_Path → 0 without degraded fit quality, the corresponding mechanism is falsified.
    • If removing the dominant term in tau_loss or tau_esc does not lower evidence, the associated mechanism is nonessential.
  3. Contrasts: with fixed sources/boundaries, compare {A_rec-only}, {A_shear-only}, and {A_rec + A_shear} and report differences in {alpha_loc(E), E_br, E_max} and Phi(E).

V. Figures & Tables (this chapter)

  1. Fig. 7-1 Schematic of energy gain–timescale–spectral index relations (A_acc, tau_*, alpha_loc, breaks).
  2. Tab. 7-1 Local Symbol Table (this chapter)

Symbol

Meaning

Unit

Validity(Ch.)

Notes

N(E)

particle number vs energy

1

Ch.7

differential form

Q(E)

source term

s^-1

Ch.7

per energy

b(E)

energy change rate

J·s^-1

Ch.7

E (A_acc - A_loss)

alpha_loc(E)

local spectral index

1

Ch.7

- d ln N / d ln E

tau_esc(E)

escape time

s

Ch.7–8

L_esc^2 / (kappa_esc D)

tau_loss(E)

loss time

s

Ch.7–8

`E /

E_br

break energy

eV

Ch.7

tau_acc = tau_min

E_max

maximum energy

eV

Ch.7

stability criterion

C_geom

geometry factor

1

Ch.7

source-dependent

C_prop

propagation factor

1

Ch.7

absorption/cascade

  1. Tab. 7-2 Index–Timescale Relations (locally constant band)

Regime

Condition

alpha_loc

acceleration-dominated

tau_acc << tau_esc, tau_loss

≈ 1

escape-limited

tau_esc << tau_loss

≈ 1 + tau_esc / tau_acc

loss-limited

tau_loss << tau_esc

≈ 1 + tau_loss / tau_acc

  1. Tab. 7-3 Break & Upper-Limit Extraction

Quantity

Definition

Diagnostic

E_br

tau_acc = min{ tau_loss, tau_esc }

curvature extremum of alpha_loc

E_max

upper bound of A_acc > ( 1/tau_esc + 1/tau_loss )

high-energy residuals & convexity


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/