Home / Docs-Technical WhitePaper / 38-EFT.WP.EDX.EMI v1.0
Chapter 8 — S↔Z & Field Mapping (I40-EMI)
I. Chapter Objectives & Structure
- Objective: Specify the canonical mapping from multiport S-parameters to tension-landscape impedance Z_eft(omega) for emission/immunity, together with mixed-mode (DM/CM) normalization; establish the field-mapping dialect from ΔZ_rad(omega) to near/far-field envelopes and I_CM(omega); fix record fields and release QA.
- Structure: Symbols & domain → I40-EMI mapping & normalization → Port→radiation equivalence & field conversion → Implementation & records → Falsifiability → Compliance templates → Cross-chapter closure.
- Shared time-of-arrival dialect (two equivalent forms; explicit gamma(ell) & d ell; record delta_form):
- Constant-factored: T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
- General: T_arr = ( ∫ ( n_eff / c_ref ) d ell )
II. Symbols & Domain
- Frequency & ports: omega, S(omega) ∈ ℂ^{N×N}, Znorm(omega), Z_eft(omega), Z_c(omega).
- Mixed-mode: T_mm (SE→MM transform), Z0_mm (DM/CM normalization impedances), S_mm, Z_mm.
- Radiation & fields: ΔZ_rad(omega) (require Re{ΔZ_rad} ≥ 0), P_rad(omega), E_rad(omega,r), H_rad(omega,r), I_CM(omega).
- Paths & weights: gamma(ell), d ell, w_{p,m}(omega).
- Hard QA: check_dim = pass, passivity (Re{Z_eft} ≥ 0), KK_consistency = pass, two-dialect T_arr agreement.
I40-EMI — S↔Z Mapping & Mixed-Mode Normalization (Canonical)
I40-EMI-1 (N-port S→Z mapping)
Let Z0 = Znorm(omega) and I identity,
Z_eft(omega) = Z0^{1/2} · ( I + S(omega) ) · ( I − S(omega) )^{-1} · Z0^{1/2}
Requirements: (I−S) invertible; post-mapping must pass passivity/KK; record Znorm(omega) (array or constant).
I40-EMI-2 (Mixed-mode normalization & back-projection)
From single-ended S_se via T_mm: S_mm = T_mm · S_se · T_mm^{-1}, then normalize with Z0_mm:
Z_mm = Z0_mm^{1/2} · ( I + S_mm ) · ( I − S_mm )^{-1} · Z0_mm^{1/2}
Preserve power & reciprocity before back-projecting to SE; record versions/sources of T_mm/Z0_mm.
I40-EMI-3 (Port phase–arrival dialect)
In-window: arg Z_eft(omega) ≈ omega·T_arr + φ_T(omega); phase must be sync-corrected first:
arg Z_corr(omega) = arg Z_raw(omega) − ( omega · Δt_sync ) , then unwrap and fit.
Port→Radiation Equivalence & Field Mapping
I40-EMI-4 (Port→radiated power equivalence)
P_rad(omega) ≈ (1/2) · Re{ΔZ_rad(omega)} · |I_port(omega)|^2 ,
with ΔZ_rad(omega) = Z_eft(omega) − ( Z_ref(omega) + ΔZ_T(omega) ) and Re{ΔZ_rad} ≥ 0.
I40-EMI-5 (Near/Far-field envelope conversion)
At distance R with known antenna/probe factors:
|E_rad(omega,R)| ≈ K_E(omega,R) · √P_rad(omega) , |H_rad(omega,R)| ≈ K_H(omega,R) · √P_rad(omega)
K_E/K_H come from versioned calibration files; detector detector∈{pk,qpk,avg} IF bandwidth/time constants must be logged with the data.
I40-EMI-6 (Common-mode current consistency)
If CM port is represented by LISN/injection networks:
I_CM(omega) = H_cm(omega) · u_inj(omega) ,
its trend is monotonically consistent with Re{ΔZ_rad}(omega) and P_rad(omega).
III. Implementation & Records (minimum execution dialect)
- Required fields:
S(omega), Znorm(omega), (if used) T_mm/Z0_mm, Z_eft(omega)/argZ, Z_c(omega), ΔZ_rad(omega) with Re_Zrad_min, I_port(omega) (or equivalent), field-calibration & distance info for E_rad/H_rad, I_CM(omega) (if collected), binding_ref, arrival{form,gamma,measure,c_ref,Tarr,u_Tarr,delta_form}, qa_gates{check_dim,passivity,KK}. - Consistency checks:
- Post-mapping Re{Z_eft} ≥ 0 and KK = pass;
- P_rad vs |E_rad|/|H_rad| monotonic trends;
- Two-dialect T_arr agreement;
- Mixed-mode back-projection conserves power/reciprocity.
IV. Falsifiability (for I40-EMI)
- J-EMI-8-1 (Positive-real & causality): if Re{Z_eft} < 0 or KK fails, reject normalization/mapping or port basis.
- J-EMI-8-2 (Port–field inconsistency): if P_rad disagrees in trend with |E_rad|/|H_rad|, reject power equivalence or field probe/antenna setup.
- J-EMI-8-3 (Mixed-mode loop): if the loop S_se→S_mm→Z_mm→Z_se breaks power or reciprocity, reject T_mm/Z0_mm or the back-projection step.
- J-EMI-8-4 (Two-dialect agreement): if |T_arr^{(1)}−T_arr^{(2)}| > u(T_arr), reject release.
V. Compliance Templates (copy-ready)
- Mapping record (YAML)
- i40_emi_mapping:
- band_GHz: [f_min, f_max]
- sparams: "/artifacts/S.s2p"
- Znorm_ohm: [50.0, 50.0]
- mixed_mode:
- enabled: true
- T_mm: "/cfg/T_mm.yaml"
- Z0_mm_ohm: [100.0, 25.0]
- arrival:
- form: "n_over_c" # or "one_over_c_times_n"
- gamma: "explicit"
- measure: "d_ell"
- c_ref: 299792458.0
- Tarr_s: 1.234e-09
- u_Tarr_s: 6.0e-12
- delta_form: "n_over_c"
- impedance:
- Z_eft: {real:[...], imag:[...]}
- deltaZ_rad: {Re_ohm:[...], Im_ohm:[...]} # Re ≥ 0
- currents_fields:
- I_port_A: [ ... ]
- I_CM_A: [ ... ] # optional
- E_rad_peak_dBuV_m: [ ... ]
- H_rad_peak_dBA_m: [ ... ]
- qa_gates: {check_dim:"pass", passivity:"pass", KK:"pass"}
- Numerical flow (pseudocode)
- # S→Z mapping & mixed-mode normalization
- S_mm = T_mm @ S_se @ inv(T_mm)
- Z_mm = Z0_mm**0.5 @ (I+S_mm) @ inv(I-S_mm) @ Z0_mm**0.5
- Z_se = back_to_single_ended(Z_mm, T_mm) # if needed
- assert min(Re(Z_se)) >= 0.0 and KK_consistency(Z_se)
- # Port→field equivalence
- ΔZ_rad = Z_se - (Z_ref + ΔZ_T)
- P_rad = 0.5 * Re(ΔZ_rad) * abs(I_port)**2
- E_env = K_E(ω,R) * sqrt(P_rad); H_env = K_H(ω,R) * sqrt(P_rad)
- assert corr(P_rad, E_env) > rho_gate and corr(P_rad, H_env) > rho_gate
- # Arrival two-dialect agreement
- assert abs(Tarr_n_over_c - Tarr_one_over_c_times_n) <= u_Tarr
VI. Cross-Chapter Links & Closure
- Dependencies: Chapter 2 (Terms & Symbols), Chapter 3 (P10-EMI Axioms), Chapter 4 (Minimal Equations & Equivalents), Chapter 6 (Cables/Connectors & Mixed-Mode), EDX.HighSpeed Chapter 8 (S↔Z Mapping).
- Downstream: Chapter 9 (Metrology & Compliance Dialect — use this mapping to emit EMI fields), Chapter 10 (Experimental Design & Falsification — port–field consistency criteria), Chapter 11 (Engineering Rules: Shielding/Ground/Returns), and the appendices (implementation APIs/dataset cards) for release & regression.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/