Home / Docs-Technical WhitePaper / 39-EFT.WP.Plasma.Confinement v1.0
Chapter 9 — Turbulence, Transport & Closure Models (S70-)
I. Chapter Objectives & Structure
- Objective: On Chapters 4 (S20-) and 5/8 (S30-/S60-), provide an integrated dialect S70-PC-* for multiscale coupling → quasilinear fluxes → empirical/theoretical closures → flux-surface averaging, unifying publication & QA gates for Γ_s/Q_s/Π_ψ, so turbulent + neoclassical fluxes are computable, regressable, and falsifiable for engineering use.
- Structure: Symbols & domain → S70-PC-1 multiscale coupling & flux definitions → S70-PC-2 quasilinear & mixing-length closures → S70-PC-3 scaling laws & tabulated closures → S70-PC-4 flux-surface averaging & global balance → S70-PC-5 diagnostic mapping & uncertainty → Implementation & records → Falsifiability → Cross-chapter closure.
- Shared arrival-time dialect (two equivalent forms; explicit gamma(ell) & d ell; record delta_form):
- Constant-factored: T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
- General: T_arr = ( ∫ ( n_eff / c_ref ) d ell )
II. Symbols & Domain
- Basics: n_s,T_s, pressure p_s, mean flows U_∥, U_E; radial coordinate ψ and metric V'(ψ).
- Fluxes & stresses: particle Γ_s, heat Q_s, radial momentum Π_ψ; turbulence intensity I_t, correlation length ℓ_c, time τ_c.
- Dimensionless/scales: ρ_* = ρ_s/a, β, ν_*, gradients a/L_{n,T,p}, safety factor q, small parameter ε=r/R_0.
- Spectra & operators: turbulence spectrum S_k(omega), flux-surface average ⟨·⟩_ψ, time/volume averages ⟨·⟩_t,⟨·⟩_V.
S70-PC-1 | Multiscale Coupling & Flux Definitions (Minimal)
- Volume to flux-surface conservation (particle/energy/momentum):
- ∂_t ⟨ n_s ⟩_ψ + (1/V') ∂_ψ [ V' ⟨ Γ_s ⟩_ψ ] = ⟨ S_{n,s} ⟩_ψ
- ∂_t ⟨ (3/2) n_s T_s ⟩_ψ + (1/V') ∂_ψ [ V' ⟨ Q_s ⟩_ψ ] = ⟨ P_s - C_s ⟩_ψ
- ∂_t ⟨ L_∥ ⟩_ψ + (1/V') ∂_ψ [ V' ⟨ Π_ψ ⟩_ψ ] = ⟨ τ_{ext} ⟩_ψ
- Flux decomposition: Γ_s = Γ_{nc} + Γ_{turb}, Q_s = Q_{nc} + Q_{turb}, Π_ψ = Π_{nc} + Π_{turb} (add S60- neoclassical terms).
S70-PC-2 | Quasilinear & Mixing-Length Closures (QL/ML)
- Quasilinear (minimal):
- Γ_{turb,s} ≈ - D_{QL,s} ∂_ψ n_s + V_{pinch,s} n_s
- , Q_{turb,s} ≈ - χ_{QL,s} ∂_ψ T_s + C_{TE,s} T_s
- Mixing-length:
- D_{QL,s} ~ χ_{QL,s} ~ γ_k / k_⊥^2
where γ_k comes from most-unstable growth rates (see Chapter 6 spectral mapping).
- Cross-terms & thermo-electric coefficients tabulated:
{V_{pinch}, C_{TE}} = 𝔉( q, ŝ, a/L_{n,T}, ρ_*, β ).
S70-PC-3 | Scaling Laws & Tabulation
- Gyro-Bohm baseline:
- D_GB = ρ_s^2 c_s / a
- , χ_GB ~ C_GB(geometry) · D_GB
- Hybrid empirical/theory closures (examples):
- D_{turb,s} = f_D(q, ŝ, ρ_*, β, a/L_n, a/L_T, ν_*)
- , χ_{turb,s} = f_χ(q, ŝ, ρ_*, β, a/L_T, …)
- Tabulated interface:
closure_table:{inputs:[q,ŝ,ρ_*,β,a/L_n,a/L_T,ν_*], outputs:[D,χ,V_{pinch},C_{TE}]}; interpolation & extrapolation must be band-limited and QA-annotated.
S70-PC-4 | Flux-Surface Averaging & Global Balance
- Consistent grid & metric: all ⟨·⟩_ψ and ∂_ψ use S30-’s V'(ψ) and metric.
- Global energy closure (hard gate):
- ∑_s ∫ Q_s dψ + P_wall + P_rad = P_in
Volume conservation with boundary powers must close within uncertainty.
S70-PC-5 | Diagnostic Mapping & Uncertainty (M10 anchor)
- Observable mapping: {Γ_s,Q_s,Π_ψ} → {D_α, calorimeters, shear spectra, reflectometry jumps}; spectral windows, sampling, and calibration factors go into dataset cards.
- Uncertainty composition: u(Γ,Q,Π) = 𝒞[ u(S_k), u(grad), u(metrics) ]; report u vs gate thresholds.
VI. Implementation & Records (minimum execution dialect)
- Required fields:
closure:{type:QL|GB|tabulated, inputs, outputs}, profiles:{n_s(ψ),T_s(ψ)}, geometry:{q(ψ),ŝ(ψ),V'(ψ)}, scales:{ρ_*,β,ν_*},
fluxes:{Γ_s(ψ),Q_s(ψ),Π_ψ(ψ)}, power_balance:{P_in,P_rad,P_wall}, diagnostics:{windows,cal},
qa_gates:{check_dim, energy_closure, interpolation_bounds}. - Record template:
- s70_transport:
- closure:
- type: "tabulated"
- table: "/closures/ql_mix.tbl"
- inputs: [q, s_hat, rho_star, beta, a_over_Ln, a_over_LT, nu_star]
- outputs: [D_turb, chi_turb, V_pinch, C_TE]
- profiles:
- n_e_m3: "grid:/profiles/ne.nc"
- Te_eV: "grid:/profiles/Te.nc"
- geometry:
- q_of_psi: "/eq/q.nc"
- s_hat: "/eq/shat.nc"
- Vprime: "/eq/Vprime.nc"
- scales: {rho_star: 0.003, beta: 0.02, nu_star: 0.08}
- fluxes:
- Gamma_e_m2s: "grid:/flux/Gamma_e.nc"
- Qe_Wm2: "grid:/flux/Qe.nc"
- Pi_Nm: "grid:/flux/Pi.nc"
- power_balance:
- Pin_W: 1.2e6
- Prad_W: 1.5e5
- Pwall_W:1.0e5
- diagnostics:
- windows: {reflectometry_GHz:[...], heat_flux_kHz:[...]}
- cal: "/diag/calibration.yaml"
- qa_gates: {check_dim:"pass", energy_closure:"pass", interpolation_bounds:"pass"}
VII. Falsifiability (for S70-)
- J-S70-1 (Energy/Power non-closure): ∑_s ∫ Q_s dψ + P_wall + P_rad ≠ P_in beyond u → reject closure or power dialect.
- J-S70-2 (Scaling deviation): log-regression residuals of D,χ vs D_GB or target scalings exceed gates → reject scaling or input profiles.
- J-S70-3 (Interpolation out-of-bounds): tabulated closure extrapolation unband-limited or QA-failed → no release.
- J-S70-4 (Spectrum–flux inconsistency): unstable bands in S_k not reflected in inferred D,χ → reject QL/mixing-length assumptions.
- J-S70-5 (Geometry inconsistency): flux-surface averaging inconsistent with S30- metrics (V'(ψ)/grid mismatch) → reject mapping or geometry inputs.
VIII. Cross-Chapter Links & Closure
- Dependencies: Chapter 2 (Terms & Symbols), Chapter 4 (Minimal Equations S20-), Chapter 5 (Equilibrium & Topology S30-), Chapter 6 (Stability & spectra), Chapter 8 (Guiding-center & neoclassical).
- Downstream: Chapter 12 (Diagnostics chain—flux inversion & uncertainty), Chapter 13 (Experimental Design & Falsification—thresholds & power analysis), Chapter 14 (SimStack & benchmarks—flux regression & release gates).
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/