HomeDocs-Technical WhitePaper40-EFT.WP.Materials.Superconductivity v1.0

Appendix A: Symbol & Units Table (Incremental)


I. Notes & Dependency Anchors
This appendix lists only symbols and units newly introduced or specialized in this volume. Global symbols, rigorous definitions, and metrology conventions are in EFT.WP.Core.Terms v1.0 and EFT.WP.Core.Metrology v1.0. All formulas/symbols/definitions are in English; cross-volume citations use the fixed style “volume + version + anchor (P/S/M/I)”. Inline symbols are wrapped in backticks.


II. Writing & Metrology Conventions (Restated)


III. Symbol Table (Incremental)

Symbol

Name

Definition/Use

SI Unit

Dimension

Notes/Anchors

psi(r,t)

order parameter

GL/BCS order parameter; `

psi

^2 ~ n_s`

— (normalized)

Delta(k,r,t)

gap function

pairing symmetry / anisotropy

J

M L^2 T^-2

A(r,t)

vector potential

EM potential

V·s·m⁻¹

M L T^-2 I^-1

Gauge declared per chapter

B(r,t)

magnetic flux density

B = curl A

T

M T^-2 I^-1

E(r,t)

electric field

E = -∂A/∂t - grad phi

V·m⁻¹

M L T^-3 I^-1

J(r,t)

current density

transport response

A·m⁻²

I L^-2

xi

coherence length

GL/London characteristic scale

m

L

Principal components xi_i

lambda_L

London penetration depth

screening scale

m

L

Principal components lambda_{L,i}

kappa

GL parameter

kappa = lambda_L / xi

Use kappa_i in anisotropic media

kappa_ij

GL tensor coefficient

kinetic term weight

J·s²·m⁻²·kg⁻¹ (equiv.)

Equivalent to eff. mass tensor form

T_c

critical temperature

SC transition temperature

K

Θ

H_c1, H_c2

lower/upper critical field

vortex entry / SC breakdown

A·m⁻¹ or T

Direction set by ê

n_s

superfluid density

SC carrier density

m⁻³

L^-3

rho_s

superfluid stiffness

phase stiffness

J·m⁻³

M L^-1 T^-2

m*

effective mass

carrier effective mass

kg

M

alpha, beta

GL coefficients

free-energy coefficients

per formula

Dimension via check_dim

sigma(ω)

complex conductivity

sigma = sigma1 + i sigma2

S·m⁻¹

I^2 T^3 M^-1 L^-3

Frequency-domain

T_fil(r)

tension

EFT intrinsic tension

N

M L T^-2

Maps to design variables

grad T_fil

tension gradient

effective “force” source

N·m⁻¹

M T^-2

Orientation/anisotropy driver

eta_ij

tension-induced anisotropy kernel

renormalizes kappa_ij

See Ch. 3/4

K_T, K_G

nonlocal kernels

convolution kernels for tension/gradient

m⁻³ etc. (model-dep.)

Thin-film/nonlocal regimes

n_eff(ω,χ)

effective refractive index

path-/band-dependent

Arrival time & propagation

c_ref

reference light speed

arrival-time reference

m·s⁻¹

L T^-1

299 792 458 (exact)

Phi0_ref

flux quantum

h/(2e)

Wb

M L^2 T^-2 I^-1

Value from metrology set

gamma(ell)

path parametrization

propagation/measurement path

Must be explicit

d ell

line element

path integrals

m

L

Must be explicit

T_arr(ω)

arrival time

one of two conventions

s

T

Record delta_form

J^{(T)}

tension-coupled current term

additive term from grad T_fil

A·m⁻²

I L^-2

See Ch. 4/7

S_v

single-vortex entropy

Hall/Nernst modeling

J·K⁻¹

M L^2 T^-2 Θ^-1

See Ch. 5

T_BKT

KTB transition temperature

2D unbinding point

K

Θ

See Ch. 5/6/11


IV. Constants & Reference Values (Adopted in this Volume)

Symbol

Definition

Value/Status

Unit

Note

c_ref

reference light speed

299 792 458 (exact)

m·s⁻¹

SI

h

Planck constant

exact

J·s

SI

e

elementary charge

exact

C

SI

k_B

Boltzmann constant

exact

J·K⁻¹

SI

Phi0_ref

flux quantum

h/(2e) (derived)

Wb

From h,e

mu0_ref

magnetic constant (reference)

set by metrology ref.

N·A⁻²

Project reference


V. Typical Dimensional Checks & Conversions


VI. Notation & Conventions (Fixed in this Volume)


VII. Dataset Card Fields (Units & Provenance — Mandatory)

units:

lambda_L: "m"

xi: "m"

H_c1: "A·m^-1"

H_c2: "A·m^-1" # or "T"

sigma1: "S·m^-1"

sigma2: "S·m^-1"

T_arr: "s"

d: "m"

constants:

c_ref: 299792458.0

contracts:

convention: "pulled_const|integrand"

delta_form: "c_ref^-1 * ∫ n_eff dℓ" # or "∫ (n_eff/c_ref) dℓ"

gamma: "piecewise: free|fixture|substrate|film|sample"

d_ell: "m"

references: ["Ch.6 W_coh","Ch.7 T_arr","Core.Metrology v1.0"]


VIII. Quality Gate (This Appendix)


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/