Home / Docs-Technical WhitePaper / 42-EFT.WP.Heat.Decoherence v1.0
Chapter 6: Heat Transport & Non-Equilibrium — Fourier / Cattaneo / BTE / Landauer
I. Objectives & Applicability
- Establish a macro–meso–quantum consistent description of heat transport and non-equilibrium: Fourier diffusion law (parabolic), Cattaneo–Vernotte (hyperbolic, finite propagation speed), Boltzmann Transport Equation (BTE, RTA/MC), and the Landauer quantum thermal conductance. Provide mappings and metrology linking temperature fields T(r,t), heat flux q(r,t), interface/size effects, and effective parameters κ(T), α(T), R_K to decoherence modeling.
- All formulas/symbols/definitions are in English and wrapped in backticks; SI units; ω/f and PSD conventions per Chapter 2.
II. Minimal Statements & Principles (S60-*)
- S60-1 (Fourier diffusion)
q = -κ ∇T, ∂_t T = α ∇^2 T + (Q/ρ c); [κ]=W·m^-1·K^-1, [α]=m^2·s^-1. - S60-2 (Cattaneo–Vernotte hyperbolic)
τ_q ∂_t q + q = -κ ∇T; eliminating q gives τ_q ∂_{tt} T + ∂_t T = α ∇^2 T + (Q/ρ c); [τ_q]=s. - S60-3 (Green–Kubo for effective κ)
κ = (1/(k_B T^2 V)) ∫_0^∞ ⟨ J_Q(0) · J_Q(t) ⟩ dt, with total heat current J_Q; ensures passivity/causality. - S60-4 (BTE in RTA)
∂_t f + v·∇_r f = -(f - f_eq)/τ(ω,p,T); energy density E = ∫ ħω f D(ω,p) dω dp, heat flux q = ∫ ħω v f D dω dp. - S60-5 (Diffusive–ballistic–hydrodynamic map)
Knudsen Kn = l_mfp / L; Kn≪1 diffusion, Kn≫1 ballistic, Kn≈O(1) requires BTE; when momentum-conserving ph–ph grows, phonon hydrodynamics emerges. - S60-6 (Landauer thermal conductance)
1D channel G_th(T) = ∫_0^∞ (ħω/2π) 𝒯(ω) (∂ n̄/∂T) dω; quantum limit G_0 = (π^2 k_B^2 / 3h) T · N_modes. - S60-7 (Kapitza interface resistance)
ΔT = R_K q_n; spectral/thermal dependence R_K(T,ω) via mismatch/relaxation models; stacked R_K,eff = Σ_i R_{K,i} (series). - S60-8 (Effective media & size corrections)
Thin films/nanowires κ_eff = κ_bulk /(1 + Λ/L) (example; Λ characteristic scattering length); membrane/beam modal DOS corrections enter BTE D(ω,p). - S60-9 (Energy conservation & sources)
Enforce ∂_t (ρ c T) + ∇·q = Q under any approximation; numerical schemes must preserve discrete energy.
III. Models & Derivations (Macro → Meso → Quantum)
- Macro PDE layer: Fourier/Cattaneo for Kn≪1 and weak non-equilibrium; steady/transient boundary-value problems solved by FEM/FVM; high-frequency/short pulses require τ_q correction.
- Meso BTE layer: RTA τ(ω,p,T) via scattering channels (U/N, interfaces, impurities) with Matthiessen’s rule; Monte Carlo or deterministic DOM/SN for q, κ_eff.
- Quantum channel layer: Landauer for low-D/strongly coherent/ballistic regimes; transmission (ω) from NEGF/cavity spectral |χ_c(ω)|^2; series/parallel with R_K to form thermal networks.
- Cross-layer consistency: validate κ_eff with Green–Kubo; reconcile BTE/NEGF q with PDE q under identical geometry/BCs; use Kn and Pe = V L / α to guide model choice.
IV. Metrology Chain & Data Contract (Required Fields)
unit_system: "SI"
materials:
kappa_T: "<W/m/K>", alpha_T: "<m^2/s>", rho: "<kg/m^3>", c: "<J/kg/K>"
relaxation:
tau_q: "<s>", tau_RTA: {U: "<s>", N: "<s>", imp: "<s>", boundary: "<s>"}
geometry:
dim: "1D|2D|3D", L: "<m>", mesh: "<file|hash>", bc: {type: "Dirichlet|Neumann|Robin", values: "..."}
interfaces:
R_K: [{pair: "A/B", value: "<K m^2/W>", model: "AMM|DMM|fit"}]
bte:
dos: "<D(ω,p)>", velocity: "<v(ω,p)>", rta: "<tau(ω,p,T)>", solver: "MC|DOM|SN"
landauer:
transmission: "<T(ω)>", nmodes: "<N_modes>", range: {ωmin:"", ωmax:""}
sources:
Q: "<W/m^3>", pulses: {type:"rect|gauss", FWHM:"<s>"}
outputs:
fields: ["T(r,t)","q(r,t)"], effective: ["kappa_eff","G_th","R_K_eff"]
uncertainty:
Σ_y: "<blocks>", priors: {kappa:"...", tau_q:"...", R_K:"..."}
references: ["Heat.Decoherence v1.0:Ch.2 S20-*","Ch.5 S50-*","Ch.7 S70-*"]
V. Algorithmic Workflows (M6-*)
- M6-1 (PDE / Fourier–Cattaneo solver)
Mesh & BCs → assemble q & energy equation → implicit/Crank–Nicolson stepping → outputs T(r,t), q(r,t), κ_eff. - M6-2 (BTE · RTA/MC)
Import D(ω,p), v(ω,p), τ(ω,p,T) → choose DOM/MC → compute heat flux & κ_eff → reconcile with macro layer. - M6-3 (Landauer)
Given 𝒯(ω) → compute G_th(T) and modular thermal networks (series R_K) → return G_th, R_K_eff. - M6-4 (Parameter inversion & calibration)
Fit κ(T), τ_q, R_K to thermal imaging T(r,t) / micro-calorimetric q; output confidence and Fisher conditioning. - M6-5 (Cross-layer consistency)
Green–Kubo checks, energy-balance audit, Kn/Pe domain labeling and model-selection report.
VI. Implementation Bindings & Interfaces (I60-*)
- I60-1 solve_fourier(geom, kappa_T, Q, bc) -> {T(r,t), q(r,t), kappa_eff}
- I60-2 solve_cattaneo(geom, kappa_T, tau_q, Q, bc) -> {T(r,t), q(r,t)}
- I60-3 solve_bte(dos, velocity, tau_rta, solver) -> {q, kappa_eff, stats}
- I60-4 compute_landauer(T_trans, N_modes, T) -> {G_th, R_th}
- I60-5 fit_thermal_params(data, model) -> {kappa(T), tau_q, R_K, cov}
- I60-6 consistency_checks(solns) -> {energy_balance, green_kubo, kn_pe_map}
Error codes: E/INPUT (missing), E/UNIT (units), E/NUMERIC (non-convergence/energy non-conservation), E/IDENTIFIABILITY (ill-conditioned).
VII. Quality Gates (This Chapter)
- Q1 Energy conservation: residual ||∂_t (ρ c T) + ∇·q - Q|| below threshold; discrete conservation holds.
- Q2 Units/dimensions: q/κ/α/R_K pass check_dim; report ENBW/time-step stability.
- Q3 Domain selection: label applicability via Kn/Pe; alert and switch to BTE/Landauer if out of domain.
- Q4 Identifiability: conditioning F = J^T Σ^{-1} J controlled; advise bandwidth/excitation upgrades when insufficient.
- Q5 Cross-layer reconciliation: κ_eff and G_th reconcile with Green–Kubo/experiments under matched geometry/BCs; series/parallel R_K rules consistent.
VIII. Cross-References & Anchors (This Chapter)
- Cross-refs (fixed style): Ch. 2 (metrology & conventions), Ch. 5 (FDT & spectral estimation), Ch. 7 (platform-specific channels), Ch. 11 (simulation stack & SBC).
- Anchors: Minimal S60-1—S60-9; Workflows M6-1—M6-5; Interfaces I60-1—I60-6.
IX. Summary
This chapter unifies Fourier/Cattaneo/BTE/Landauer descriptions of heat transport across scales, provides solution & calibration workflows from PDE to BTE/NEGF, and reconciles layers via Green–Kubo and energy conservation. Outputs T(r,t), q(r,t), κ_eff, G_th, R_K feed Chapter 7 platform channels and Chapter 11 simulation stack as traceable thermal inputs.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/