Home / Docs-Technical WhitePaper / 42-EFT.WP.Heat.Decoherence v1.0
Chapter 11: Simulation Stack & Synthetic Data — Langevin / BTE / Stochastic Liouville
I. Objectives & Applicability
- Build a pluggable simulation stack & synthetic-data framework unifying Langevin (Q/Langevin), BTE (Boltzmann Transport Equation), and Stochastic Liouville paths; jointly generate noise→spectrum→response→rates with thermal-field coupling for algorithm validation, SBC coverage testing, and cross-platform benchmarking.
- All formulas/symbols/definitions are in English and wrapped in backticks; SI units; ω/f & PSD per Ch. 2; spectrum→rate per Chs. 4/5; heat transport & BCs per Ch. 6; platform channels per Ch. 7; engineering constraints per Ch. 8; metrology & inversion per Ch. 9.
II. Minimal Statements & Principles (S110-*)
- S110-1 (Q/Langevin kernel)
m \ddot x + ∫_0^t γ(t−t') \dot x(t') dt' + ∂V/∂x = ξ(t), with ⟨ξ⟩=0 and FDT: S_{ξξ}(ω) = 2 k_B T Re{γ(ω)} (classical). Quantum form uses symmetric spectrum S_{ξξ}(ω) = ħω coth(ħω/2k_B T) Re{γ(ω)}. - S110-2 (BTE · RTA)
∂_t f + v·∇_r f = −(f−f_eq)/τ(ω,p,T); energy E = ∫ ħω f D(ω,p) dωdp, heat flux q = ∫ ħω v f D dωdp. - S110-3 (Stochastic Liouville)
\dot ρ = −i[H_S + H_c(t) + H_{st}(t), ρ] + 𝒟[ρ]; random drive H_{st}(t) parameterized by known spectrum S_{st}(ω) (Gaussian/non-Gaussian); take 𝒟[ρ] as GKSL if desired. - S110-4 (Spectral consistency)
Simulation output S_{xx}(ω) must match target S_{tar}(ω) within tolerance and satisfy Parseval: Var[x] = (1/2π) ∫ S_{xx}(ω) dω. - S110-5 (Thermo–quantum coupling)
Use Ch. 6 to obtain T(r,t) and q(r,t); feed into n̄(ω,T) and material params (κ(T), R_K(T)); iterate until energy conservation and rate convergence. - S110-6 (SBC coverage)
Sample from the prior p(θ) → simulate y → estimate \hat θ with Ch. 9 → rank stats & coverage near nominal.
III. Modules & Architecture (SimStack)
- Trajectory & thermal field: traj(t): x(t); T(r,t) and boundary bc (from Ch. 6).
- Noise/spectrum module: generate target S_{tar}(ω) (Johnson/1/f/TLS/white/custom), or produce via J(ω)+χ(ω) and FDT.
- Langevin solver: explicit/semi-implicit/exponential integrators, Krylov; colored noise via convolution or state-space embedding.
- BTE solver: RTA DOM/SN or MC; libraries for DOS/group velocity/relaxation times.
- Stochastic Liouville: GKSL/Redfield/TCL2 generators + stochastic Hamiltonians; inject control sequence F(ω).
- Observables & rates: unified outputs {S_{xx}(ω), S_{ΔωΔω}(ω), Γ_1, Γ_φ, T_1, T_2, Q} and thermal {T(r,t), q(r,t)}.
- Recording & repro: repro_bundle = {scripts, params, env, anchors, seed, mesh_hash}.
IV. Metrology Chain & Data Contract (Required Fields)
unit_system: "SI"
scenario:
platform: "SC|Semiconductor|Spin|Optomech|Acoustic|custom"
geom_bc: {mesh:"<file|hash>", bc:"Dirichlet|Neumann|Robin"}
thermal:
kappa_T:"<W/m/K>", R_K:"<K m^2/W>", sources:{Q:"<W/m^3>"}, T0:"<K>"
noise_spectra:
S_target: {family:"Johnson|one_over_f|TLS|white|custom", params:{...}, type:"one-sided|two-sided", freq:"ω|f"}
J_omega: {family:"ohmic|sub|super|custom", params:{eta:"...", s:"...", omega_c:"<rad/s>"}}
dynamics:
method: "Langevin|BTE|SLE|hybrid"
langevin: {gamma:"<γ(ω) or kernel>", V:"<V(x)>"}
bte: {dos:"<D(ω,p)>", v:"<v(ω,p)>", tau:"<τ(ω,p,T)>", solver:"MC|DOM|SN"}
sle: {generator:"GKSL|Redfield|TCL2", Hs:"<H_S>", Hst:"<noise model>", control:"<seq>"}
outputs:
spectra: ["S_xx(ω)","S_dw(ω)"], rates: ["Gamma1","Gamma_phi","T1","T2","Q"], thermal:["T(r,t)","q(r,t)"]
uncertainty:
Σ_y:"<blocks>", ci_level:0.95
reproducibility:
bundle:{scripts:"...", env:"...", anchors:["S110-*","M11-*","I110-*"], seed:2025}
references: ["Heat.Decoherence v1.0:Ch.2 S20-*","Ch.4 S40-*","Ch.5 S50-*","Ch.6 S60-*","Ch.7 S70-*"]
V. Algorithmic Workflows (M11-*)
- M11-1 (Thermo–spectrum preprocessing)
Solve T(r,t); build n̄(ω,T) and material/interface params → assemble S_target(ω) or J(ω), χ(ω). - M11-2 (Langevin path)
With γ(ω), V(x), generate colored noise → time-step → output x(t), S_{xx}(ω) and Γ_φ. - M11-3 (BTE path)
Choose DOM/MC → update f, q, κ_eff → write back thermal chain and T(r,t); reconcile layers (Green–Kubo/energy conservation). - M11-4 (SLE path)
Build generator + stochastic drive → specify control → integrate ρ(t) & observables → compute Γ_1/Γ_φ via filter functions. - M11-5 (Synthetic data & SBC)
Sample θ ~ p(θ) → run any path to produce y → infer \hat θ via Ch. 9 → rank/coverage → issue benchmark tables.
VI. Implementation Bindings & Interfaces (I110-*)
- I110-1 prep_thermo_spectra(geom, thermal, spectra) -> {T(r,t), S_target(ω), J(ω), χ(ω)}
- I110-2 simulate_langevin(gamma, V, S_target, dt, T_end) -> {x(t), S_xx(ω), stats}
- I110-3 simulate_bte(dos, v, tau, solver, bc) -> {f, q, kappa_eff, audit}
- I110-4 simulate_sle(generator, Hs, Hst, control) -> {ρ(t), S_dw(ω), rates}
- I110-5 make_synthetic(sim_config) -> {dataset_card.yaml, data.h5, repro_bundle}
- I110-6 run_sbc(prior, sim_config, estimator, K) -> {coverage, ranks, report}
Error codes: E/INPUT (missing), E/UNIT (units), E/NUMERIC (non-convergence/energy imbalance), E/SPECTRA (inconsistent spectra), E/IDENTIFIABILITY (ill-conditioned).
VII. Quality Gates (This Chapter)
- Q1 Convention consistency: ω/f, PSD one-/two-sided, and FDT/Parseval match Chs. 2/5; pass check_dim.
- Q2 Energy & conservation: BTE/thermal-chain energy error below threshold; Langevin/SLE power spectra consistent with energy.
- Q3 Spectral consistency: S_xx(ω) matches S_target(ω) within tolerance; validate colored-noise state-space poles/zeros.
- Q4 Coverage: SBC pass@coverage near nominal; rank histograms near uniform.
- Q5 Reproducibility: complete repro_bundle (scripts/params/env/mesh hash/seed/anchors); one-click replay passes.
VIII. Cross-References & Anchors (This Chapter)
- Cross-refs (fixed style): Ch. 2 (conventions), Ch. 4 (open QS), Ch. 5 (FDT & spectra), Ch. 6 (heat transport), Ch. 7 (platform channels), Ch. 9 (metrology & inversion), Ch. 10 (robust strategies).
- Anchors: Minimal S110-1—S110-6; Workflows M11-1—M11-5; Interfaces I110-1—I110-6.
IX. Summary
This chapter provides a pluggable simulation stack and synthetic-data contract across Langevin / BTE / Stochastic Liouville routes, unifying co-generation of thermal–spectral–rate & control effects. With quality gates on energy conservation, spectral consistency, and coverage, it outputs traceable {S_{xx}(ω), Γ_1, Γ_φ, T_1, T_2} and T(r,t), q(r,t), enabling cross-platform validation, SBC tests, and engineered design comparisons.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/