Home / Docs-Technical WhitePaper / 47-PTN Template v1.0
Chapter 7 — Error Budget & Uncertainty
I. Error Sources Catalog
Uniform specification: each source includes symbol, unit, estimation method, distributional assumption, and correlation; type A (statistical) / B (non-statistical). Path-dependent terms explicitly declare gamma(ell) and measure d ell.
- Timing & synchronization: u(δt_abs) (s, A/B), u(Δτ_ch) (s, A), u(jitter) (s, A), u(σ_y(τ)) (dimensionless, A).
- Path & geometry: u(gamma(ell)) (m, B), u(d ell) (m, B), occlusion/distortion u(D) (dimensionless, B).
- Medium & dispersion: u(n_eff(ell)) (dimensionless, A/B), u(n_eff(λ)) (dimensionless, B).
- Reference constants: u(c_ref) (m/s, B), u(λ_ref) (m, B), u(k_ref) (1/m, B).
- Instrument & calibration: u(θ_k) (per parameter unit, B), u(g) (gain, B), u(σ_ro) (e⁻, A).
- Sampling & quantization: u(Δt) (s, B), u(Δell) (m, B), u(q_bits) (quantization step, B).
- Modeling & numerics: u(model) (residual scale, A), u(discretization) (discretization error, B), u(screen) (thin-screen approx., B).
- Environment & drift: u(α_T·ΔT) (per object unit, B), u(Δq_att) (attitude, B).
- Cleaning & selection: u(cleaning) (bias from exclusion rules, B), u(missing) (missingness pattern, A/B).
II. Uncertainty Propagation Models
Three tracks in parallel: linearization, covariance integration, and Monte Carlo. For robust losses, provide a second-order surrogate for propagation.
- Delta method (linearization): for y = f(x), x ∈ ℝ^p, Jacobian J = ∂f/∂x |_{x̂},
u^2(y) ≈ J · Cov(x) · Jᵀ. - Arrival time T_arr (first-order, explicit path & measure):
T_arr = ( ∫ ( n_eff / c_ref ) d ell ), let w(ell) = ( 1 / c_ref ),
u^2(T_arr) = ∬ w(ell₁) w(ell₂) · Cov[ n_eff(ell₁), n_eff(ell₂) ] d ell₁ d ell₂ + ( ∂T_arr/∂c_ref )^2 u^2(c_ref),
where ∂T_arr/∂c_ref = - ( 1 / c_ref^2 ) ∫ n_eff d ell. Discrete form:
u^2(T_arr) ≈ ∑_{i,j} w_i w_j · Cov(n_i, n_j) · d ell_i · d ell_j + (∂T_arr/∂c_ref)^2 u^2(c_ref). - Phase accumulation Phi:
Phi = ( 2π / λ_ref ) ( ∫ n_eff d ell ),
u^2(Phi) = ( 2π / λ_ref )^2 ∬ Cov(n_eff(ell₁), n_eff(ell₂)) d ell₁ d ell₂ + ( ∂Phi/∂λ_ref )^2 u^2(λ_ref),
∂Phi/∂λ_ref = - ( 2π / λ_ref^2 ) ∫ n_eff d ell. - Continuity/flux-type metrics (examples): for ε_flux or ΔM, use linearization or bootstrap:
u(ε_flux) ≈ √{ Var(ε_flux_residuals) };
u(ΔM) ≈ √{ u^2(∫ρ dV|_{t2}) + u^2(∫ρ dV|_{t1}) − 2·Cov }. - Correlation structure: if n_eff along the path has correlation length L_c, model Cov(n_i,n_j) with kernel K(Δell) = exp( −|Δell| / L_c ); set L_c by fit or prior.
- Monte Carlo: sample x ~ 𝒩(x̂, Cov) (or robust family), B ≥ 10^4; compute y_b = f(x_b); take u(y) = std(y_b); for robust cases, report median and quantile band.
III. Composition & Intervals
- Combined standard uncertainty: for uncorrelated terms, u_c = √( ∑ u_i^2 ); with correlations, u_c^2 = ∑ u_i^2 + 2∑_{i<j} ρ_{ij} u_i u_j.
- Expanded uncertainty: U = k · u_c, with coverage factor k = 2 (~95%) unless specified otherwise.
- Interval types: report confidence intervals (frequentist) or credible intervals (Bayesian); robust pipelines provide median ± quantile spread (e.g., P2.5–P97.5).
- Threshold alignment: align U with Chapter 4 thresholds (τ_T, τ_phi, τ_M); positive/negative decisions are made on interval comparisons.
- Units & dimensions: every interval carries units; include a check_dim report showing dimensional closure per quantity.
IV. Monitoring & Alerts
- Online metrics: Q_res (residual robustness), p_dim (dimension-check pass rate), σ_y(τ), SNR, drift_rate.
- Control charts: EWMA/Shewhart for T_arr, Phi, ε_flux; out-of-control adds quality.flags += {"uncert_alert"}.
- Freshness gate: acq.ts_start − calib.timestamp ≤ τ_calib; if expired, enter restricted mode and elevate the reporting level of U.
- Recalibration trigger: force recalibration when any u(θ_k) exceeds threshold or p_dim < 1; re-evaluate u_c and U.
V. Error-Budget Card (publication format)
Fields: source, symbol, unit, type(A/B), estimate, distribution, correlation, note, see[].
source | symbol | unit | type | estimate | distribution | correlation | see[] |
|---|---|---|---|---|---|---|---|
Absolute timing | δt_abs | s | A | u(δt_abs) | approx-N | vs channel skew | Core.Metrology v1.0 |
Path measure | d ell | m | B | u(d ell) | uniform | with gamma(ell) | Core.DataSpec v1.0:TARR |
Medium index profile | n_eff(ell) | 1 | A/B | u(n_eff) | GP kernel | length L_c | Core.Terms v1.0 |
Reference speed | c_ref | m/s | B | u(c_ref) | normal | global | Core.Terms v1.0 |
Reference wavelength | λ_ref | m | B | u(λ_ref) | normal | global | Core.Metrology v1.0 |
Calibration params | θ_k | — | B | u(θ_k) | normal | block-correlated | Metrology.* v1.0 |
Readout noise | σ_ro | e⁻ | A | u(σ_ro) | normal | per-channel | Methods.Cleaning v1.0 |
Discretization | — | — | B | u(discretization) | bounded | model-dependent | Methods.SimStack v1.0 |
Deliverables: provide error_budget.csv with a flattened see[] list (volume + version + anchor).
VI. Reporting & Records
- Uncertainty summary table: for each key quantity (T_arr, Phi, ε_flux, ΔM, Q), report x̂ ± u_c (k=1) and x̂ ± U (k).
- Method statement: specify propagation route (delta/Monte Carlo/bootstrap) and kernel/correlation length if used.
- Reproducibility: record random seeds, sample sizes, B, kernel params, estimator choices, and versions in audit.jsonl.
VII. Normative Examples (drop-in)
- Arrival-time uncertainty (discrete path)
Given: T_arr = ∑_i ( n_i / c_ref ) · d ell_i
u^2(T_arr) = ∑_{i,j} ( d ell_i d ell_j / c_ref^2 ) · Cov(n_i, n_j)
+ ( ∑_i n_i d ell_i / c_ref^2 )^2 · u^2(c_ref)
Dims: [1]/[m·s^-1]*[m] = [s] ✅
- Phase uncertainty (with λ_ref)
Phi = ( 2π / λ_ref ) ∑_i n_i d ell_i
u^2(Phi) = ( 2π / λ_ref )^2 ∑_{i,j} d ell_i d ell_j · Cov(n_i, n_j)
+ ( 2π ∑_i n_i d ell_i / λ_ref^2 )^2 · u^2(λ_ref)
Unit: [rad] ✅
- Robust intervals (bootstrap)
Draw B=10000 bootstrap replicates of residuals → refit → collect T_arr^*.
Report median [P2.5, P97.5]; compare to thresholds τ_T; mark pass/fail.
VIII. Machine-Readable Template (ready to commit)
version: "1.0.0"
uncertainty:
targets: ["T_arr","Phi","ε_flux","ΔM","Q"]
methods:
T_arr: ["delta","mc"]
Phi: ["delta","mc"]
ε_flux: ["bootstrap","delta"]
delta:
jacobian: "auto"
cov_model:
n_eff:
kernel: "exp"
L_c_m: 25.0
mc:
draws: 10000
seed: 20250924
coverage:
k: 2
type: "confidence" # or "credible" / "quantile"
report:
export: ["error_budget.csv","uncertainty.md","check_dim_report.json"]
see:
- "EFT.WP.Core.Equations v1.1:S20-1"
- "EFT.WP.Core.Metrology v1.0:check_dim"
- "Methods.Cleaning v1.0"
- "Methods.SimStack v1.0"
- "Core.DataSpec v1.0:TARR"
IX. Alignment with Quality Gates (as in Chapter 5)
- G4 | Dimensional closure: p_dim = 1.0.
- G6 | Noise-residual gate: Q_res within admissible band.
- Failure triggers: p_dim < 1 or U beyond threshold raises uncert_alert and initiates recalibration workflow.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/