Home / Docs-Technical WhitePaper / 56-Report-Level Methods Appendix Template v1.0
Chapter 6 Mathematical Formulation & Pseudocode
I. Chapter Goals & Scope (Mandatory)
- Describe the method with a minimal yet complete mathematical formulation and execution-grade pseudocode, ensuring consistent, reviewable symbols—units—dimensions—path/measure—complexity—numerical stability.
- Aligned with Ch.4 (S/P), Ch.5 (Data & Experimental Design), Ch.7 (Metrology & Calibration), and Ch.8 (Evaluation Protocol).
II. Main Statements & Symbol Table (Mandatory)
- Main equations (inline with backticks):
- General form: T_arr = ( ∫ ( n_eff / c_ref ) d ell )
- Factored form: T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
- Path & measure: gamma(ell); d ell.
- Symbols—units—dimensions:
n_eff: unit 1, dim=1; c_ref: unit m·s^-1, dim=L T^-1; T_arr: unit s, dim=T. - Dimensional check: check_dim=true; all expressions with division/integral/composite operators must use parentheses.
III. Constraints & Assumptions (Mandatory)
- Measurability & boundedness: n_eff≥0, c_ref>0, gamma(ell) continuously differentiable.
- Equivalence condition (optional): if ∂_ell c_ref = 0 a.e., the two forms are equivalent; otherwise use the factored form only as an exception.
- Numerical domain: ell ∈ [ell_0, ell_1], step Δell>0; state integral error cap ε_int.
IV. Pseudocode (Mandatory)
Style: single entry point; explicit inputs/outputs; boundary checks; error handling; reproducible params (seed, Δell, ε_int).FUNCTION EstimateArrivalTime(gamma, n_eff, c_ref, mode, Δell, ε_int):
# Inputs:
# gamma(ell): path parameterization on [ell0, ell1]
# n_eff(ell): effective refractive index along gamma
# c_ref(ell or const): reference propagation limit
# mode ∈ {"general","factored"}
# Δell > 0: step size; ε_int ≥ 0: integral tolerance
# Output: T_arr (scalar, unit: s)
ASSERT Δell > 0
ell_grid ← Discretize([ell0, ell1], step=Δell)
IF mode == "general":
acc ← 0
FOR k FROM 1 TO len(ell_grid)-1:
mid ← Midpoint(ell_grid[k-1], ell_grid[k])
acc ← acc + ( n_eff(mid) / c_ref(mid) ) * (ell_grid[k] - ell_grid[k-1])
T_arr ← acc
ELSE IF mode == "factored":
c0 ← RefValue(c_ref) # require piecewise-constant or validated bound
ASSERT IsApproximatelyConstant(c_ref, ell_grid, tol=τ_c)
acc ← 0
FOR k FROM 1 TO len(ell_grid)-1:
mid ← Midpoint(ell_grid[k-1], ell_grid[k])
acc ← acc + n_eff(mid) * (ell_grid[k] - ell_grid[k-1])
T_arr ← (1 / c0) * acc
ENDIF
# Optional: RichardsonExtrapolation / SimpsonComposite if ε_int is tight
IF ε_int > 0:
T_arr ← RefineIntegral(T_arr, gamma, n_eff, c_ref, mode, Δell, ε_int)
RETURN T_arr
V. Complexity & Numerical Stability (Mandatory)
- Time complexity: O(N) with N = ⌈(ell_1-ell_0)/Δell⌉; space complexity: O(1) (streaming sum).
- Stability notes:
- Step size: Δell ≤ min{ℓ_c/10, ℓ_var/10} (one-tenth of medium-variation and curvature scales).
- Factoring check: require max_ell |c_ref(ell)-c0| / c0 ≤ τ_c before using factored.
- Integration error: ε_int governs Simpson/adaptive quadrature; record final grid and error estimate.
VI. Alignment with Evaluation Protocol (Mandatory)
- Gates alignment:
- gate_accuracy>=0.99@7d: compare to high-fidelity baseline (finer Δell or analytic value).
- gate_latency<=2h@7d: runtime limit for batch path integration.
- compat_rate>=0.995@replay: replay consistency.
- Experiment log: store Δell/ε_int/τ_c and result hashes.
VII. Machine Structure (YAML; JSON-equivalent, Mandatory)
math:
statements:
- "T_arr = ( ∫ ( n_eff / c_ref ) d ell )"
- "T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )"
path: "gamma(ell)"
measure: "d ell"
symbols:
- { name: "T_arr", unit: "s", dim: "T" }
- { name: "n_eff", unit: "1", dim: "1" }
- { name: "c_ref", unit: "m·s^-1", dim: "L T^-1" }
check_dim: true
assumptions:
measurable: true
positivity: { n_eff: ">=0", c_ref: ">0" }
equivalence_cond: "∂_ell c_ref = 0 a.e."
algo:
pseudocode_ref: "EstimateArrivalTime"
inputs: ["gamma","n_eff","c_ref","mode","Δell","ε_int"]
outputs: ["T_arr"]
complexity: { time: "O(N)", space: "O(1)" }
stability:
step_rule: "Δell <= min{ℓ_c/10, ℓ_var/10}"
factored_tol: "τ_c"
integral_tol: "ε_int"
evaluation_links:
gates_hard: ["gate_accuracy>=0.99@7d"]
gates_soft: ["unit_cost<=1.0x@30d"]
metrics: ["gate_latency<=2h@7d","compat_rate>=0.995@replay"]
arrival_time:
delta_form: "general|factored"
record:
Δell: 0.001
ε_int: 1e-6
τ_c: 0.01
VIII. Human × Machine Mapping (Mandatory)
Human Section | Machine Field | Validation Focus |
|---|---|---|
Main equations & symbols | math.statements[], math.symbols[] | Inline backticks; units/dimensions complete |
Path & measure | math.path, math.measure | gamma(ell) and d ell explicit |
Dimensional check | math.check_dim=true | Consistent with symbol triplets |
Pseudocode interface | algo.inputs/outputs/pseudocode_ref | Clear IO; execution-grade |
Complexity & stability | algo.complexity, algo.stability.* | O(N)/O(1) with step/tolerance records |
Gate alignment | evaluation_links.* | gate_* naming, windows & thresholds |
Delta caliber | arrival_time.delta_form | choose general or factored and record params |
IX. Minimal Sample (human abstract × machine snippet, Mandatory)
- Human abstract: use the general form T_arr = ( ∫ ( n_eff / c_ref ) d ell ); Δell=1e-3, ε_int=1e-6; declare gamma(ell) and d ell in the same paragraph; check_dim=true.
- Machine snippet:
math:
statements: ["T_arr = ( ∫ ( n_eff / c_ref ) d ell )"]
path: "gamma(ell)"
measure: "d ell"
symbols:
- { name: "T_arr", unit: "s", dim: "T" }
- { name: "n_eff", unit: "1", dim: "1" }
- { name: "c_ref", unit: "m·s^-1", dim: "L T^-1" }
check_dim: true
algo:
inputs: ["gamma","n_eff","c_ref","mode","Δell","ε_int"]
complexity: { time: "O(N)", space: "O(1)" }
arrival_time:
delta_form: "general"
record: { Δell: 0.001, ε_int: 1e-6, τ_c: 0.01 }
X. Validation Rules (regex/consistency, Mandatory)
- Equations: inline backticks; if T_arr appears, math.path and math.measure are required.
- Pseudocode: must specify IO and error checks; complexity declaration must match implementation.
- Dimensions: math.check_dim=true; math.symbols[*].unit/dim non-empty.
- Gates: gate_<metric>(>=|<=)[^@]+@[^ ]+$; consistent with Ch.8.
XI. Citation & Cross-Reference Style (Mandatory)
; all EFT.WP.* cites must include explicit version and anchor, with a machine-readable list in references.see[].“See 《 vX.Y》 Ch.x S/P/M/I…”Fixed format:Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/