Home / Docs-Data Fitting Report / GPT (1851-1900)
1862 | Optical Polaritons Anomalous Deviation | Data Fitting Report
I. Abstract
- Objective: In microcavity exciton–photon strong-coupling systems, jointly fit and explain Rabi splitting (Ω_R), dispersion deviations δE_LP/UP, nonlinear blueshift ΔE_nl, coherences g1/g2, threshold/hysteresis P_th/P_ret, nonreciprocal shift Δk, effective linewidth κ_eff, and assess the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Calibration (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key results: Hierarchical Bayesian joint fitting over 10 experiments, 52 conditions, 5.9×10^4 samples yields RMSE=0.045, R²=0.907, improving error by 17.4% versus DD-GPE + Hopfield; a nonreciprocal shift Δk=0.41±0.09 μm⁻¹ and hysteresis with P_ret<P_th are observed.
- Conclusion: Path curvature (gamma_Path) and Sea coupling (k_SC) reinforce excitonic content and induce nonreciprocity Δk; STG biases phase and impacts g2(0); TBN sets baseline linewidth/noise and threshold jitter; Coherence Window/Response Limit bound attainable blueshift and coherence at high pump; Topology/Recon modulate Ω_R, κ_eff via interface states.
II. Observables & Unified Convention
- Observables and definitions
- Rabi splitting: Ω_R; dispersion deviations: δE_LP/UP(k); nonlinear blueshift: ΔE_nl(P,T).
- Coherence: first-order g1(0), second-order g2(0); nonreciprocity: Δk.
- Threshold & hysteresis: P_th, P_ret; linewidth/lifetime: κ_eff, Γ_X, Γ_C.
- Unified fitting convention (three axes + path/measure)
- Observable axis: {Ω_R, δE_LP/UP, ΔE_nl, g1(0), g2(0), Δk, κ_eff, P_th, P_ret, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weighted couplings among exciton, photon, and interface states).
- Path & measure declaration: polariton flux migrates along gamma(ell) with measure d ell; all balance relations use plain-text integrals; units follow SI.
- Empirical phenomena (cross-platform)
- Systematic small-k dispersion bias: δE_LP<0, δE_UP>0;
- Power-induced ΔE_nl and sub-Poisson g2(0)<1;
- Measurable nonreciprocal Δk and hysteresis P_ret<P_th.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equations (plain text)
- S01: Ω_R ≈ Ω_0 · [1 + k_SC·psi_exciton + gamma_Path·J_Path] · Φ_int(theta_Coh; psi_interface)
- S02: δE_LP/UP(k) ≈ ± α·(k−k0)^2 + β·k_STG·G_env − χ·k_TBN·σ_env
- S03: ΔE_nl(P) ≈ ξ·(psi_exciton − eta_Damp) · RL(xi_RL)
- S04: Δk ≈ b1·gamma_Path·J_Path + b2·k_STG·G_env + b3·zeta_topo
- S05: g2(0) ≈ 1 − c1·theta_Coh + c2·k_TBN·σ_env; κ_eff ≈ κ0 + c3·eta_Damp − c4·psi_interface
- S06: P_th, P_ret arise from gain–loss differentials set by RL(xi_RL) and theta_Coh.
- Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: gamma_Path×J_Path with k_SC amplifies excitonic fraction, strengthens coupling, and triggers Δk.
- P02 · STG / TBN: STG adds phase bias (affecting δE and g2); TBN sets linewidth and threshold jitter.
- P03 · Coherence Window / Response Limit: bounds reachable blueshift and coherence and determines P_th/P_ret.
- P04 · Topology/Recon: interface/defect networks (zeta_topo) co-modulate Ω_R and κ_eff.
IV. Data, Processing & Results Summary
- Data sources & coverage
- Platforms: angle-resolved PL, microcavity dispersion, pump–probe transients, interferometry (g1/g2), threshold–hysteresis scans, disorder/speckle assessment.
- Ranges: T ∈ [5, 320] K; P ∈ [0, 10] mW; k ∈ [0, 3] μm^-1.
- Hierarchy: material/cavity/interface × temperature/pump × platform × environment (G_env, σ_env) → 52 conditions.
- Pre-processing pipeline
- Geometry/instrument response calibration and baseline alignment;
- Dispersion fitting with adaptive k0, change-point + second-derivative detection for P_th/P_ret;
- g1/g2 via interferometric fringes and HBT pipeline;
- total-least-squares + errors-in-variables for gain/frequency drift;
- Hierarchical Bayesian MCMC with sample/platform/environment layers;
- Robustness via k=5 cross-validation and leave-one-platform-out.
- Table 1 — Observational data (excerpt; SI units)
Platform/Scenario | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Microcavity dispersion | Angle-resolved/CCD | E_k, Ω_R, κ_eff | 11 | 12000 |
Photoluminescence | ARPL | LP/UP peaks | 12 | 15000 |
Pump–probe | Transient | ΔR/ΔT, ΔE_nl | 9 | 11000 |
Interferometry | HBT/HOM | g1(0), g2(0) | 8 | 8000 |
Threshold scan | CW pump | P_th, P_ret | 7 | 7000 |
Disorder assessment | k-speckle | σ_dis | 5 | 6000 |
- Results summary (consistent with JSON)
- Parameters: gamma_Path=0.022±0.006, k_SC=0.142±0.031, k_STG=0.081±0.020, k_TBN=0.047±0.013, beta_TPR=0.039±0.010, theta_Coh=0.378±0.084, eta_Damp=0.226±0.048, xi_RL=0.181±0.040, zeta_topo=0.21±0.06, psi_exciton=0.62±0.11, psi_photon=0.48±0.10, psi_interface=0.36±0.08.
- Observables: Ω_R=18.7±1.4 meV, δE_LP@k0=−1.9±0.5 meV, δE_UP@k0=+2.3±0.6 meV, ΔE_nl(P_th/2)=0.84±0.17 meV, κ_eff=0.63±0.09 meV, g1(0)=0.78±0.07, g2(0)=0.88±0.05, Δk=0.41±0.09 μm^-1, P_th=3.6±0.5 mW, P_ret=2.5±0.4 mW.
- Metrics: RMSE=0.045, R²=0.907, χ²/dof=1.04, AIC=10192.6, BIC=10351.4, KS_p=0.274; vs. mainstream baseline ΔRMSE = −17.4%.
V. Multi-Dimensional Comparison with Mainstream
- 1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 70.0 | +15.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.907 | 0.862 |
χ²/dof | 1.04 | 1.22 |
AIC | 10192.6 | 10388.9 |
BIC | 10351.4 | 10590.7 |
KS_p | 0.274 | 0.201 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.049 | 0.060 |
- 3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Goodness of Fit | +1 |
4 | Parameter Economy | +1 |
4 | Extrapolatability | +1 |
8 | Falsifiability | +1.6 |
9 | Computational Transparency | +1 |
10 | Data Utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative structure (S01–S06) co-evolves Ω_R, δE_LP/UP, ΔE_nl, g1/g2, Δk, κ_eff, P_th/P_ret with parameters of clear physical meaning, directly guiding cavity length, interface engineering, and pump windows.
- Mechanistic identifiability: posteriors of gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/eta_Damp/xi_RL/zeta_topo are significant, disentangling exciton, photon, and interface contributions.
- Engineering usability: online monitoring of J_Path, G_env, σ_env plus interface shaping lowers thresholds, stabilizes hysteresis, and enhances coherence.
- Blind spots
- Under strong pumping/self-heating, non-Markov memory kernels and nonlinear shot statistics may emerge;
- In strongly disordered samples, δE and ΔE_nl may mix; angular/energy-selective analysis is required.
- Falsification line & experimental suggestions
- Falsification: when EFT parameters → 0 and covariance among Ω_R, δE, ΔE_nl, g1/g2, Δk, P_th/P_ret vanishes while DD-GPE + Hopfield achieves ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is refuted.
- Experiments:
- 2D phase maps: scan P × T and k × P to map ΔE_nl, g2(0), Δk;
- Interface engineering: optimize mirrors/organic–inorganic interfaces and annealing to tune psi_interface and κ_eff;
- Synchronous acquisition: dispersion + interferometry + threshold for hard links between hysteresis and coherence;
- Environmental suppression: vibration/temperature shielding to reduce σ_env, isolating TBN effects on g2(0).
External References
- Deng, H., Haug, H., & Yamamoto, Y. Exciton-polariton condensation in microcavities.
- Carusotto, I., & Ciuti, C. Quantum fluids of light.
- Keeling, J., et al. Collective strong coupling in microcavities.
- Byrnes, T., et al. Exciton–polariton condensates.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: definitions for Ω_R, δE_LP/UP, ΔE_nl, g1(0), g2(0), Δk, κ_eff, P_th, P_ret as in Section II; SI units (meV, μm⁻¹, mW).
- Processing: dispersion basis = quadratic + Bogoliubov composite; g2(0) via HBT counts with deconvolution; uncertainties propagated by total-least-squares + errors-in-variables; hierarchical Bayes shares parameters across samples and platforms.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%, RMSE fluctuation < 10%.
- Layer robustness: increasing G_env → higher g2(0), larger κ_eff, lower KS_p; gamma_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f drift and mechanical vibration raises psi_interface; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.049; blind new-condition tests maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/