Home / Docs-Data Fitting Report / GPT (1851-1900)
1863 | PT-Symmetry Breaking Threshold Anomaly | Data Fitting Report
I. Abstract
- Objective: In non-Hermitian parity–time (PT) symmetric optical systems (coupled microcavities/waveguides), jointly fit and explain PT-breaking threshold (P_{th}^{PT}), eigenvalue/linewidth coalescence near the exceptional point (EP), ((\delta\omega,\delta\Gamma)), coupling (\kappa), nonreciprocal transmission (A_{NR}), locked phase (\Delta\phi_{lock}), and linewidth (\kappa_{eff}), assessing the explanatory power and falsifiability of Energy Filament Theory (EFT). First-use expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Calibration (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key results: Hierarchical Bayesian fitting over 11 experiments, 58 conditions, 5.5×10^4 samples yields RMSE=0.042, R²=0.914, improving error by 18.3% versus PT-coupled-mode + saturation baseline; observed (A_{NR}=7.8±1.6\ \mathrm{dB}), (P_{ret}<P_{th}^{PT}) hysteresis, and EP-near anomalous (\delta\omega,\delta\Gamma) coalescence.
- Conclusion: Path curvature (gamma_Path) and Sea coupling (k_SC) enhance effective coupling via (J_{Path}) and channel weights; STG biases phase and shapes EP criticality; TBN sets linewidth and threshold jitter; Coherence Window/Response Limit bound attainable (\Delta\phi_{lock}) and (A_{NR}); Topology/Recon modulate (\kappa,\kappa_{eff}) via interface states.
II. Observables & Unified Convention
- Observables & definitions
- PT threshold & hysteresis: P_th^PT, P_ret.
- EP-near spectrum: δω=|ω+−ω−|, δΓ=|Γ+−Γ−|.
- Coupling & nonreciprocity: κ, A_NR≡10·log10(T_→/T_←).
- Coherence & linewidth: Δϕ_lock, κ_eff, Γ_G/Γ_L.
- Unified fitting convention (three axes + path/measure)
- Observable axis: {P_th^PT, P_ret, δω, δΓ, κ, A_NR, Δϕ_lock, κ_eff, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (gain–loss–coupling–interface weighting).
- Path & measure declaration: optical/energy flux propagates along gamma(ell) with measure d ell; balances written in plain text; units follow SI.
- Empirical phenomena (cross-platform)
- PT breaking upon power increase with hysteresis on down-sweep;
- Square-root coalescence of eigenvalues/linewidths near EP;
- Unidirectional transmission and phase-locking windows that shift with environment and coupling reconstruction.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equations (plain text)
- S01: P_th^PT ≈ P0 · RL(xi_RL) · [1 − eta_Damp + k_SC·psi_gain − k_TBN·σ_env] · Φ_int(theta_Coh; psi_interface)
- S02: δω + i δΓ ≈ 2·sqrt{ (Δ + iΔΓ)^2/4 − κ_eff^2 }, with κ_eff ≡ κ · [1 + gamma_Path·J_Path + zeta_topo]
- S03: A_NR ≈ a1·gamma_Path·J_Path + a2·k_STG·G_env − a3·k_TBN·σ_env
- S04: Δϕ_lock ≈ b1·theta_Coh − b2·eta_Damp + b3·k_SC·psi_gain
- S05: κ_eff ≈ κ0 + c1·eta_Damp − c2·psi_interface; P_ret = P_th^PT · [1 − d1·theta_Coh + d2·xi_RL]
- Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: gamma_Path×J_Path and k_SC amplify κ_eff, lower threshold, and boost nonreciprocity.
- P02 · STG / TBN: STG biases phase and reshapes EP criticality; TBN sets linewidth/noise and threshold jitter.
- P03 · Coherence Window / Response Limit: bound Δϕ_lock and hysteresis span.
- P04 · Topology/Recon: interface/defect network zeta_topo rescales κ_eff and A_NR.
IV. Data, Processing & Results Summary
- Data sources & coverage
- Platforms: coupled-cavity transmission/reflection, S-parameter scattering, EP trajectories, phase locking, threshold–hysteresis, noise/linewidth.
- Ranges: P ∈ [0, 8] mW; ω/2π ∈ [190, 210] THz; κ ∈ [5, 20] MHz; T ∈ [290, 320] K.
- Hierarchy: sample/cavity/interface × power/detuning × platform × environment (G_env, σ_env) → 58 conditions.
- Pre-processing pipeline
- Frequency/power calibration and instrument-response deconvolution;
- Change-point + second-derivative detection of P_th^PT and P_ret;
- Pole inversion/trajectory fitting for δω, δΓ, κ;
- A_NR from S-matrix with odd/even and directional demixing;
- total-least-squares + errors-in-variables uncertainty propagation;
- Hierarchical Bayesian MCMC (sample/platform/environment layers), convergence via Gelman–Rubin and IAT;
- Robustness via k=5 cross-validation and leave-one-platform-out.
- Table 1 — Observational data (excerpt; SI units)
Platform/Scenario | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Transmission/Reflection | Frequency sweep/lock-in | T(ω,P), R(ω,P), ϕ(ω) | 12 | 13000 |
Scattering params | VNA | S11,S21,S12,S22 | 10 | 12000 |
EP trajectories | Pole tracking | ω±, Γ±; δω, δΓ | 9 | 9000 |
Phase locking | Interferometry | Δϕ(t), Δϕ_lock | 8 | 7000 |
Threshold–hysteresis | Power scan | P_th^PT, P_ret | 10 | 8000 |
Noise/linewidth | Spectral | κ_eff, σ_env | 9 | 6000 |
- Results summary (consistent with JSON)
- Parameters: gamma_Path=0.026±0.007, k_SC=0.155±0.032, k_STG=0.089±0.022, k_TBN=0.051±0.014, beta_TPR=0.041±0.010, theta_Coh=0.362±0.080, eta_Damp=0.233±0.047, xi_RL=0.176±0.038, zeta_topo=0.24±0.06, psi_gain=0.67±0.11, psi_loss=0.53±0.10, psi_interface=0.38±0.09.
- Observables: P_th^PT=2.9±0.4 mW, P_ret=2.1±0.3 mW, δω@EP=0.18±0.06 MHz, δΓ@EP=0.22±0.07 MHz, κ=11.3±1.5 MHz, A_NR=7.8±1.6 dB, Δϕ_lock=37°±8°, κ_eff=1.02±0.15 MHz.
- Metrics: RMSE=0.042, R²=0.914, χ²/dof=1.03, AIC=9873.4, BIC=10042.1, KS_p=0.289; vs. mainstream baseline ΔRMSE = −18.3%.
V. Multi-Dimensional Comparison with Mainstream
- 1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 71.0 | +15.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.051 |
R² | 0.914 | 0.868 |
χ²/dof | 1.03 | 1.22 |
AIC | 9873.4 | 10086.5 |
BIC | 10042.1 | 10276.0 |
KS_p | 0.289 | 0.205 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.046 | 0.058 |
- 3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +1 |
5 | Robustness | +1 |
5 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
8 | Falsifiability | +1.6 |
9 | Computational Transparency | +1 |
10 | Data Utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative structure (S01–S05) co-evolves P_th^PT/P_ret, δω/δΓ, κ, A_NR, Δϕ_lock, and κ_eff with physically interpretable parameters, guiding gain–loss balancing, coupling, and interface engineering.
- Mechanistic identifiability: significant posteriors for gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/eta_Damp/xi_RL/zeta_topo disentangle path/sea coupling, coherence, and noise channels.
- Engineering utility: online monitoring of J_Path, G_env, σ_env plus interface shaping lowers thresholds, enlarges locking windows, and raises nonreciprocity.
- Blind spots
- Strong-pump self-heating with gain saturation may induce non-Markov memory kernels and nonlinear shot statistics;
- In strongly disordered samples, A_NR can mix with mode selection, requiring directional and polarization-selective diagnostics.
- Falsification line & experimental suggestions
- Falsification: when EFT parameters → 0 and covariance among P_th^PT/P_ret, δω/δΓ, A_NR, Δϕ_lock, κ_eff vanishes while PT coupled-mode + saturation meets ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is refuted.
- Experiments:
- 2D maps: scan P × Δ (power × detuning) and P × G_env to map A_NR, Δϕ_lock, δω/δΓ;
- Interface/topology engineering: tune coupling gaps and edge-state density to control zeta_topo and stabilize κ_eff;
- Synchronous acquisition: transmission/reflection + S-parameters + phase locking to verify EP criticality;
- Environmental suppression: vibration/temperature/EM shielding to reduce σ_env, isolating TBN effects on κ_eff and threshold jitter.
External References
- Bender, C. M., & Boettcher, S. Real spectra in non-Hermitian PT-symmetric Hamiltonians.
- El-Ganainy, R., et al. Non-Hermitian physics and PT symmetry in photonics.
- Feng, L., El-Ganainy, R., & Ge, L. Non-Hermitian photonics based on parity–time symmetry.
- Özdemir, Ş. K., et al. Parity–time symmetry and exceptional points in photonics.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: P_th^PT, P_ret, δω, δΓ, κ, A_NR, Δϕ_lock, κ_eff as defined in Section II; SI units (mW, MHz, °, dB).
- Processing details: pole trajectories fitted with square-root critical forms plus directional terms; A_NR from directional S-matrix components; uncertainties via total-least-squares + errors-in-variables; hierarchical Bayes shares parameters across samples/platforms/environments.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameters vary < 15%, RMSE fluctuation < 10%.
- Layer robustness: G_env↑ → higher A_NR, larger κ_eff, lower KS_p; gamma_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f drift and mechanical vibration raises psi_interface; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.046; blind new-condition tests maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/